Aouatef Bellamine

Learn More
BACKGROUND The CYP4A11 arachidonic acid monooxygenase oxidizes endogenous arachidonic acid (AA) to 20-hydroxyeicosatetraenoic acid (20-HETE), a metabolite with renovascular and tubular functions. Mice with targeted disruption of Cyp4a14, a murine homologue of CYP4A11, have severe hypertension. We combined molecular and biochemical approaches to identify a(More)
Upon sequence alignment of CYP51 sterol 14alpha-demethylase from animals, plants, fungi, and bacteria, arginine corresponding to Arg-448 of CYP51 in Mycobacterium tuberculosis (MT) is conserved near the C terminus of all family members. In MTCYP51 Arg-448 forms a salt bridge with Asp-287, connecting beta-strand 3-2 with helix J. Deletion of the three(More)
14alpha-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal(More)
Metabolic complications associated with HIV infection and treatment frequently present as a relative lack of peripheral adipose tissue associated with dyslipidemia and insulin resistance. In this review we explain the connection between abnormalities of intermediary metabolism, observed either in vitro or in vivo, and this group of metabolic effects. We(More)
Cytochrome P450 158A2 (CYP158A2) is encoded within a three-gene operon (sco1206-sco1208) in the prototypic soil bacterium Streptomyces coelicolor A3(2). This operon is widely conserved among streptomycetes. CYP158A2 has been suggested to produce polymers of flaviolin, a pigment that may protect microbes from UV radiation, in combination with the adjacent(More)
Both CYP158A1 and CYP158A2 are able to catalyze an oxidative C-C coupling reaction producing biflaviolin or triflaviolin in Streptomyces coelicolor A3(2). The substrate-bound crystal structures of CYP158A2 and CYP158A1 reveal that the side chain of Ile87 in CYP158A2 points to the active site contacting the distal flaviolin molecule, however, the bulkier(More)
Lanosterol 14alpha-demethylase (CYP51) is a cytochrome P450 enzyme involved primarily in cholesterol biosynthesis. CYP51 in the presence of NADPH-cytochrome P450 reductase converts lanosterol to follicular fluid meiosis activating sterol (FF-MAS), an intermediate of cholesterol biosynthesis which accumulates in gonads and has an additional function as(More)
Lanosterol 14 -demethylase (CYP51) is a cytochrome P450 enzyme involved primarily in cholesterol biosynthesis. CYP51 in the presence of NADPH–cytochrome P450 reductase converts lanosterol to follicular fluid meiosis activating sterol (FF-MAS), an intermediate of cholesterol biosynthesis which accumulates in gonads and has an additional function as oocyte(More)
Sterol 14alpha-demethylase encoded by CYP51 is a mixed-function oxidase involved in sterol synthesis in eukaryotic organisms. Completion of the Mycobacterium tuberculosis genome project revealed that a protein having homology to mammalian 14alpha-demethylases might be present in this bacterium. Using genomic DNA from mycobacterial strain H(37)Rv, we have(More)
RP-HPLC has largely been the analytical method of choice in the pharmaceutical industry for many years because of the poor aqueous solubility and hydrophobicity of most small molecule drug candidates. RP-HPLC coupled to MS has provided an excellent analytical tool for qualitatively and quantitatively determining levels of drug molecules or drug metabolites(More)