Learn More
In myelinated peripheral axons, Kv1 potassium channels are clustered at the juxtaparanodal region and at an internodal line located along the mesaxon and below the Schmidt-Lanterman incisures. This polarized distribution is controlled by Schwann cells and requires specific cell adhesion molecules (CAMs). The accumulation of Kv1 channels at the(More)
The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking(More)
The respective roles of inflammatory and neurodegenerative processes in the pathology of multiple sclerosis (MS) and in its animal model experimental autoimmune encephalomyelitis (EAE) are controversial. Novel treatment strategies aim to operate within the CNS to induce neuroprotection and repair processes in addition to their anti-inflammatory properties.(More)
The aim of this study was to identify cell populations relevant to pathogenesis and repair within the injured CNS in mice that recovered from experimental autoimmune encephalomyelitis (EAE). We demonstrate that in two EAE models, with either relapsing-remitting or chronic course, T-cells and resident activated microglia manifested extensive IL-17(More)
Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear(More)
Progress in the processing of wet tissues, without the need of fixation and complex preparation procedures, may facilitate the microscopic examination of tissues and cells. Microscopic examination of tissues is a central tool in clinical diagnosis as well as in diverse areas of research. The authors present the application of Wet SEM, a technology for(More)
The authors present the application of wet SEM for histopathological assessment, a technology for imaging fully hydrated samples at atmospheric pressure in a scanning electron microscope (SEM). Both transmission and scanning electron microscopy techniques usually require long and complex sample preparation of the tissues. In marked contrast, a rapid(More)
In this report we introduce wet-tissue scanning electron microscopy, a novel technique for direct imaging of wet tissue samples using backscattered electrons. Samples placed in sealed capsules are imaged through a resilient, electron-transparent membrane. The contrast of the imaged samples may be enhanced by chemical staining. The samples several(More)
Atherosclerotic cardiovascular disease (CVD) is the universal leading cause of mortality and a major cause of morbidity. Additionally, the global epidemic of diabetes is associated with considerable cardiovascular mortality risk due to accelerated premature atherosclerosis. Development of effective therapies for atherosclerosis is dependent upon improved(More)