Anvarbek Meirmanov

  • Citations Per Year
Learn More
A linear system of differential equations describing a joint motion of elastic porous body and fluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation operators. The(More)
A linear system of differential equations describing a joint motion of thermoelastic porous body and incompressible thermofluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the(More)
A linear system of differential equations describing a joint motion of thermoelastic porous body and thermofluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation(More)
A linear system of differential equations describing a joint motion of a thermoelastic porous body with a sufficiently large Lamé’s constants (absolutelty rigid body) and a thermofluid, occupying porous space, is considered. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the(More)
Abstract. We consider a linear system of differential equations describing a joint motion of elastic porous body and fluid occupying porous space. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is(More)
Within the framework of continuum mechanics, the full description of joint motion of elastic bodies and compressible viscous fluids with taking into account thermal effects is given by the system consisting of the mass, momentum, and energy balance equations, the first and the second laws of thermodynamics, and an additional set of thermomechanical state(More)
  • 1