Anupam Madhukar

Learn More
Materials and devices with microstructures on the nanometer scale are revolutionizing technology, but until recently simulation at this scale has been problematic. Developments in parallel computing are now allowing atomistic simulation using multiresolution algorithms, such as fast multipole methods. With these algorithms, researchers may soon be able to(More)
Cell adhesion through binding between specific cell membrane receptors and corresponding cell-adhesion-molecule (CAM)-coated solid surfaces is examined. The morphology of surfaces at various modification steps leading to functionalization with cell-binding CAMs is characterized. In one week neuron cultures, enhanced growth on surfaces modified with(More)
Hydroxylamine-seeding of colloidal gold particles has been used to fabricate gold nanostructures on a SiO2 substrate. Gold nanoparticles (15 nm diameter) were randomly deposited on a SiO2 surface that had been modified with aminopropyltrimethoxysilane (APTS). The nanoparticles were then manipulated using a scanning force microscope (SFM) tip to produce 1-D(More)
We report on high-resolution transmission electron microscope structural studies of InAs colloidal semiconductor nanocrystal quantum dots (NCQDs) on ultrathin GaAs (001) semiconductor single-crystal substrates. We employ a benign method for preparing electron transparent specimens that is suitable for the study of such fragile samples. The image contrast(More)
We report the observation of photocurrent in silicon nanowires induced by nonradiative resonant energy transfer (NRET) from adjacent layers of lead sulfide nanocrystal quantum dots using time-resolved photocurrent measurements. This demonstration supports the feasibility of a new solar cell paradigm (Lu, S.; Madhukar, A. Nano Lett. 2007, 7, 3443-3451) that(More)
Evidence is provided for nonradiative resonant energy transfer (NRET) from excitons in nanocrystal quantum dots (NCQDs) to the confined states of an adjacent quantum well (QW) at low excitation power and rate competitive with the quantum dot radiative decay. This indicates that NRET in optimized NCQD-QW/nanowire systems may provide a solar energy conversion(More)
We present a new approach to ligand exchange on lead sulfide (PbS) quantum dots (QDs) in which the QDs are reacted with preformed Pb cation-ligand exchange units designed to promote reactions that replace surface Pb and oleate groups on the as-grown QDs. This process introduces negligible surface defects as the high quantum efficiency (∼55%) of the as-grown(More)