Anubhuti Goel

Learn More
The discrimination and production of temporal patterns on the scale of hundreds of milliseconds are critical to sensory and motor processing. Indeed, most complex behaviours, such as speech comprehension and production, would be impossible in the absence of sophisticated timing mechanisms. Despite the importance of timing to human learning and cognition,(More)
Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in(More)
Telling time and anticipating when external events will happen is among the most important tasks the brain performs. Yet the neural mechanisms underlying timing remain elusive. One theory proposes that timing is a general and intrinsic computation of cortical circuits. We tested this hypothesis using electrical and optogenetic stimulation to determine if(More)
  • 1