Learn More
Hormone therapy (HT) drugs and bisphosphonates prevent osteoporosis by inhibiting osteoclastic bone resorption. However, the effects of osteoporosis and anti-resorptive drugs on the mechanical behavior of the bone tissue constituting individual trabeculae have not yet been quantified. In this study, we test the hypothesis that the mechanical properties of(More)
Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in vitro was determined with QCT and DXA before and after defatting. ChA consisted of(More)
In this study we present the analysis of in vivo micro-CT scans using a new method based on image registration that accurately evaluates longitudinal micro-CT studies. We tested if detailed changes in the bone architecture could be detected and tracked in individual animals. A prototype in vivo micro-CT scanner (Skyscan 1076) was developed in which tibiae(More)
To identify key regulatory mechanisms in the growth and development of the human endometrium, microarray analysis was performed on uncultured human endometrium collected during menstruation (M) and the late-proliferative (LATE-P)-phase of the menstrual cycle, as well as after 24 h incubation in the presence of oestradiol (17β-E2). We demonstrate the(More)
BACKGROUND Hormone replacement therapy increases the risk of developing ulcerative colitis in postmenopausal women. Chronic intestinal inflammation predisposes to colon cancer development, but effects of female hormones on colitis-associated cancer development have not been examined. AIM To investigate the role of female hormones in the dextran sodium(More)
Oestrogens play an important role in bone metabolism; they preserve bone mass after the menopause. Their action in bone has recently been shown to be, partly, a direct one, as oestrogen receptors and their effects have been demonstrated in bone cells. The role of progestogens in bone metabolism is less clear. In this study it has been shown that 17(More)
Tibolone, selective estrogen receptor modulators (SERMs) like tamoxifen and raloxifene, and estrogen (+/-progestogen) treatments prevent bone loss in postmenopausal women. They exert their effects on bone via the estrogen receptor (ER) and the increase in bone mass is due to resorption inhibition. The effect of SERMs on bone mineral density is less than(More)
Olfactomedin-4 (OLFM-4) is an extracellular matrix protein that is highly expressed in human endometrium. We have examined the regulation and function of OLFM-4 in normal endometrium and in cases of endometriosis and endometrial cancer. OLFM-4 expression levels are highest in proliferative-phase endometrium, and 17β-estradiol up-regulates OLFM-4 mRNA in(More)
UNLABELLED 1alpha,25(OH)2-vitamin D strongly regulates the expression of the epithelial calcium channel CaT1. CaT1 expression is reduced in ERKOalpha mice and induced by estrogen treatment, pregnancy, or lactation in VDR WT and KO mice. Estrogens and vitamin D are thus independent potent regulators of the expression of this calcium influx mechanism, which(More)
Tibolone (Org OD14) has estrogenic, progestogenic, and/or androgenic activity depending on the tissue. In postmenopausal women, tibolone prevents bone loss without stimulating the endometrium. Tibolone is effective in preventing trabecular bone loss from the peripheral and axial skeleton of young and old ovariectomized (OVX) rats by reducing bone turnover,(More)