Antti Kuusisto

Learn More
This work presents a classification of weak models of distributed computing. We focus on deterministic distributed algorithms, and we study models of computing that are weaker versions of the widely-studied port-numbering model. In the port-numbering model, a node of degree <i>d</i> receives messages through <i>d</i> input ports and it sends messages(More)
We investigate extensions of dependence logic with generalized quantifiers. We also introduce and investigate the notion of a generalized atom. We define a system of semantics that can accommodate variants of dependence logic, possibly extended with generalized quantifiers and generalized atoms, under the same umbrella framework. The semantics is based on(More)
We study the complexity of predicate logics based on team semantics. We show that the satisfiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable dependence logic is undecidable, thereby solving an open problem from the team semantics literature. We(More)
Modal inclusion logic is a formalism that belongs to the family of logics based on team semantics. This article investigates the model checking and validity problems of propositional and modal inclusion logics. We identify complexity bounds for both problems, covering both lax and strict team semantics. Thereby we tie some loose ends related to the(More)
Dependence logic is a new logic which incorporates the notion of “dependence”, as well as “independence” between variables into first-order logic. In this thesis, we study extensions and variants of dependence logic on the first-order, propositional and modal level. In particular, the role of intuitionistic connectives in this setting is emphasized. We(More)
We study the two-variable fragments D^2 and IF^2 of dependence logic and independence-friendly logic. We consider the satisfiability and finite satisfiability problems of these logics and show that for D^2, both problems are NEXPTIME-complete, whereas for IF^2, the problems are undecidable. We also show that D^2 is strictly less expressive than IF^2 and(More)
We introduce a novel decidable fragment of first-order logic. The fragment is one-dimensional in the sense that quantification is limited to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called(More)
We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the ALC family and on conjunctive queries. We show that rewritability into FO and into monadic Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable(More)
Uniform one-dimensional fragment UF=1 is a formalism obtained from first-order logic by limiting quantification to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called uniformity conditions)(More)