#### Filter Results:

- Full text PDF available (5)

#### Publication Year

2004

2016

- This year (0)
- Last 5 years (2)
- Last 10 years (3)

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

We consider the limit set of generalised iterated function systems. Under the assumption of a natural potential, the so-called cylinder function, we prove the existence of the invariant probability measure satisfying the equilibrium state. We motivate this approach by showing that for typical self-affine sets there exists an ergodic invariant measure having… (More)

- ANTTI KÄENMÄKI
- 2004

We study how the Hausdorff measure is distributed in nonsym-metric narrow cones in R n. As an application, we find an upper bound close to n − k for the Hausdorff dimension of sets with large k-porosity. With k-porous sets we mean sets which have holes in k different directions on every small scale.

- ANTTI KÄENMÄKI
- 2016

We prove that generically, for a self-affine set in R d , removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore open question.

- TAPIO RAJALA, Pekka Koskela, +9 authors Hannele Säntti
- 2009

- Antti Käenmäki, Tuomas Sahlsten, Pablo Shmerkin
- J. London Math. Society
- 2015

We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution in the sense of Hochman is generated by a uniformly scaling measure, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery… (More)

- ‹
- 1
- ›