Learn More
The cytochrome bc1 is one of the three major respiratory enzyme complexes residing in the inner mitochondrial membrane. Cytochrome bc1 transfers electrons from ubiquinol to cytochrome c and uses the energy thus released to form an electrochemical gradient across the inner membrane. Our X-ray crystal structures of the complex from chicken, cow and rabbit in(More)
The cytochrome bc complexes represent a phylogenetically diverse group of complexes of electron-transferring membrane proteins, most familiarly represented by the mitochondrial and bacterial bc1 complexes and the chloroplast and cyanobacterial b6f complex. All these complexes couple electron transfer to proton translocation across a closed lipid bilayer(More)
The effects of herbivores on plant production and fitness may not relate directly to the quantity of biomass removed because folivory may alter photosynthetic rates at a considerable distance from the damaged tissue [Welter, S. C. (1989) in Insect-Plant Interactions, ed. Bernays, E. A. (CRC, Boca Raton), pp. 135-151.]. An impediment to understanding the(More)
The effect of different feeding behaviours of 1st and 4th instar Trichoplusia ni on photosynthesis of Arabidopsis thaliana var. Columbia was characterized using spatially resolved measurements of fluorescence and leaf temperature, as well as leaf gas exchange,. First instars made small holes with a large perimeter-to-area ratio and avoided veins, while 4th(More)
Activation energies for partial reactions involved in oxidation of quinol by the bc(1) complex were independent of pH in the range 5. 5-8.9. Formation of enzyme-substrate complex required two substrates, ubihydroquinone binding from the lipid phase and the extrinsic domain of the iron-sulfur protein. The activation energy for ubihydroquinone oxidation was(More)
The cytochrome (cyt) bc(1) complex is central to energy transduction in many species. Most investigators now accept a modified Q-cycle as the catalytic mechanism of this enzyme. Several thermodynamically favorable side reactions must be minimized for efficient functioning of the Q-cycle. Among these, reduction of oxygen by the Q(o) site semiquinone to(More)
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper(More)
Arginine257 (R257), in the de-helix that caps the Q(B) site of the D1 protein, has been shown by mutational studies to play a key role in the sensitivity of Photosystem II (PS II) to bicarbonate-reversible binding of the formate anion. In this article, the role of this residue has been further investigated through D1 mutations (R257E, R257Q, and R257K) in(More)
Two forms of the equation for expression of the rate constant for electron transfer through a Marcus-type treatment are discussed. In the first (exergonic) form, the Arrhenius exponential term was replaced by its classical Marcus term; in the second (endergonic) form, the forward rate constant was replaced by the reverse rate constant (the forward rate(More)
The bifurcated reaction at the Q(o)-site of the bc(1) complex provides the mechanistic basis of the proton pumping activity through which the complex conserves redox energy in the proton gradient. Structural information about the binding of quinone at the site is lacking, because the site is vacant in crystals of the native complexes. We now report the(More)