Learn More
Large variations in maximal voluntary torque are reported in the literature during isometric plantarflexion contractions. We propose that these differences, which could reach 40 % across similar studies, could be explained by differences in the instructions provided, and notably by instructions as to favoring or not multi-joint contractions. Sixteen(More)
In walking experimental conditions, subjects are sometimes unable to perform two steps on two different forceplates. This leads the authors to develop methods for discerning right and left ground reaction data while they are summed during the double support in walking. The aim of this study is to propose an adaptive transition function that considers the(More)
The aim of this study was to test the hypothesis that running at fixed fractions of Froude (Nfr) and Strouhal (Str) dimensionless numbers combinations induce dynamic similarity between humans of different sizes. Nineteen subjects ran in three experimental conditions, (i) constant speed, (ii) similar speed (Nfr) and (iii) similar speed and similar step(More)
The objective of this study is to clarify the functional roles of upper limb muscles during standing and seated cycling when power output increases. We investigated the activity of seven upper limb and trunk muscles using surface electromyography (EMG). Power outputs ranged from ~100-700 W with a pedalling frequency of 90 revolution per minute.(More)
Several suggestions on the upper limb involvement in cycling exist but, to date, no study has quantified upper limb kinetics in this task. The aim of this study was to determine how crank power and pedaling position (seated or standing) affect upper limb kinetics. Handlebar loadings and upper limb kinematics were collected from 17 participants performing(More)
The aim of this study was to assess the accuracy of a new dimensionless number associating Froude (Nfr) and Strouhal (Str) called Modela-w to induce walking dynamic similarity among humans of different sizes. Nineteen subjects walked in three experimental conditions: (i) constant speed, (ii) similar speed (Nfr) and (iii) similar speed and similar step(More)
The human is often modeled as a Poly-Articulated Model (PAM) with rigid segments while some authors use a Spring Mass Model (SMM) for modeling locomotion. These two models are considered independent, and the objective of this study was to link them in order to enlighten the origin of the elasticity in locomotion. Using the characteristics of the two models,(More)
The purpose of the study was to establish the link between the saddle vertical force and its determinants in order to establish the strategies that could trigger the sit-stand transition. We hypothesized that the minimum saddle vertical force would be a critical parameter influencing the sit-stand transition during cycling. Twenty-five non-cyclists were(More)
The aims of this study were to determine if isolated maximum joint torques and joint torques during a maximum polyarticular task (i.e. cycling at maximum power) are correlated despite joint angle and velocity discrepancies, and to assess if an isolated joint-specific torque production capability at slow angular velocity is related to cycling power. Nine(More)