Learn More
The nucleus accumbens (Nacb) receives inputs from hippocampus and amygdala but it is still unclear how these inputs are functionally organized and may interact. The interplay between these input pathways was examined using electrophysiological tools in the rat, in vivo, under halothane anesthesia. After fornix/fimbria stimulation (Fo/Fi, subicular(More)
The nucleus accumbens occupies a strategic position as an interface between limbic cortex and midbrain structures involved in motor performance. The fornix-fimbria carries limbic inputs to the ventral striatum, namely by way of fibers originating in the CA1/subiculum and projecting to the nucleus accumbens. It also carries fibers arising in the septal area(More)
To determine how hippocampal location-selective discharges might influence downstream structures for navigation, nucleus accumbens neurons were recorded in rats alternating between two tasks guided respectively by lit cues in the maze or by extramaze room cues. Of 144 phasically active neurons, 80 showed significant behavioral correlates including(More)
To be able to address the question how neurotransmitters or pharmacological agents influence activity of neuronal populations in freely moving animals, the combidrive was developed. The combidrive combines an array of 12 tetrodes to perform ensemble recordings with a moveable and replaceable microdialysis probe to locally administer pharmacological agents.(More)
It has been proposed that the striatum plays a crucial role in learning to select appropriate actions, optimizing rewards according to the principles of 'Actor-Critic' models of trial-and-error learning. The ventral striatum (VS), as Critic, would employ a temporal difference (TD) learning algorithm to predict rewards and drive dopaminergic neurons. This(More)
To understand how hippocampal signals are processed by downstream neurons, we analyzed the relative timing between neuronal discharges in simultaneous recordings in the hippocampus and nucleus accumbens of rats performing in a plus maze. In all, 154 pairs of cells (composed of 65 hippocampal and 56 accumbens neurons) were examined during the 1 s period(More)
The goal of this study was to help better understand the importance of the nucleus accumbens (Nacc) in the processing of position and reward value information for goal-directed orientation behaviors. Sixteen male Long-Evans rats, under partial water deprivation, were trained in a plus-maze to find water rewards in the respective arms which were lit in(More)
The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural activity was recorded during an olfactory discrimination(More)
To study how hippocampal output signals conveying spatial and other contextual information might be integrated in the nucleus accumbens, tonically active accumbens neurons were recorded in three unrestrained rats as they performed spatial orientation tasks on an elevated round rotatable platform with four identical reward boxes symmetrically placed around(More)
Human brain oscillations occur in different frequency bands that have been linked to different behaviours and cognitive processes. Even within specific frequency bands such as the beta- (14-30 Hz) or gamma-band (30-100 Hz), oscillations fluctuate in frequency and amplitude. Such frequency fluctuations most probably reflect changing states of neuronal(More)