Antonis K. Hatzopoulos

Learn More
We have analysed various adult organs and different developmental stages of mouse embryos for the presence of octamer-binding proteins. A variety of new octamer-binding proteins were identified in addition to the previously described Oct1 and Oct2. Oct1 is ubiquitously present in murine tissues, in agreement with cell culture data. Although Oct2 has been(More)
CONTEXT Clinical trial results suggest that intracoronary delivery of autologous bone marrow mononuclear cells (BMCs) may improve left ventricular (LV) function when administered within the first week following myocardial infarction (MI). However, because a substantial number of patients may not present for early cell delivery, the efficacy of autologous(More)
Oct4 and Oct5 are two mouse maternally expressed proteins binding to the octamer motif. Both are found in unfertilized oocytes and embryonic stem cells, whereas Oct4 is also found in primordial germ cells. In this study, the activity of the octamer motif was analysed in two embryonic stem cell lines containing Oct4 and Oct5, the teratocarcinoma-derived cell(More)
CONTEXT Previous studies using autologous bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy have demonstrated safety and suggested efficacy. OBJECTIVE To determine if administration of BMCs through transendocardial injections improves myocardial perfusion, reduces left ventricular end-systolic volume (LVESV), or enhances(More)
The cardiovascular system develops early in embryogenesis from cells of mesodermal origin. To study the molecular and cellular processes underlying this transition, we have isolated mesodermal cells from murine embryos at E7.5 with characteristic properties of endothelial progenitors by using a combination of stromal cell layers and growth conditions. The(More)
Tissue neovascularization involves recruitment of circulating endothelial progenitor cells that originate in the bone marrow. Here, we show that a class of embryonic endothelial progenitor cells (Tie-2+, c-Kit+, Sca-1+, and Flk-1-/low), which were isolated at E7.5 of mouse development at the onset of vasculogenesis, retain their ability to contribute to(More)
Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known(More)
BACKGROUND Pluripotent embryonic stem (ES) cells, which have the capacity to give rise to all tissue types in the body, show great promise as a versatile source of cells for regenerative therapy. However, the basic mechanisms of lineage specification of pluripotent stem cells are largely unknown, and generating sufficient quantities of desired cell types(More)
Adequate response to low oxygen levels (hypoxia) by hypoxia inducible factor (HIF) is essential for normal development and physiology, but this pathway may also contribute to pathological processes like tumor angiogenesis. Here we show that hypoxia is an inducer of Notch signaling. Hypoxic conditions lead to induction of the Notch ligand Dll4 and the Notch(More)
Two distinct thioredoxin/thioredoxin reductase systems are present in the cytosol and the mitochondria of mammalian cells. Thioredoxins (Txn), the main substrates of thioredoxin reductases (Txnrd), are involved in numerous physiological processes, including cell-cell communication, redox metabolism, proliferation, and apoptosis. To investigate the(More)