Learn More
Hormones that act through the calcium-releasing messenger, inositol 1,4,5-trisphosphate (IP3), cause intracellular calcium oscillations, which have been ascribed to calcium feedbacks on the IP3 receptor. Recent studies have shown that IP3 levels oscillate together with the cytoplasmic calcium concentration. To investigate the functional significance of this(More)
Airway smooth muscle (ASM) is cyclically stretched during breathing, even in the active state, yet the factors determining its dynamic force-length behavior remain incompletely understood. We developed a model of the activated ASM strip and compared its behavior to that observed in strips of rat trachealis muscle stimulated with methacholine. The model(More)
Nucleotide excision repair (NER) requires the concerted action of many different proteins that assemble at sites of damaged DNA in a sequential fashion. We have constructed a mathematical model delineating hallmarks and general characteristics for NER. We measured the assembly kinetics of the putative damage-recognition factor XPC-HR23B at sites of DNA(More)
Experimental studies have demonstrated that Ca(2+)-regulated proteins are sensitive to the frequency of Ca(2+) oscillations, and several mathematical models for specific proteins have provided insight into the mechanisms involved. Because of the large number of Ca(2+)-regulated proteins in signal transduction, metabolism and gene expression, it is desirable(More)
Targeting of inner nuclear membrane (INM) proteins is essential for nuclear architecture and function, yet its mechanism remains poorly understood. Here, we established a new reporter that allows real-time imaging of membrane protein transport from the ER to the INM using Lamin B receptor and Lap2β as model INM proteins. These reporters allowed us to(More)
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates(More)
Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture(More)
Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin(More)
We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of furthering the understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca(2+) and crossbridge dynamics, to events at the level of the entire(More)
This paper presents a modelling framework in which the local stress environment of airway smooth muscle (ASM) cells may be predicted and cellular responses to local stress may be investigated. We consider an elastic axisymmetric model of a layer of connective tissue and circumferential ASM fibres embedded in parenchymal tissue and model the active(More)