Antonio Torroni

Learn More
Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to(More)
Variation in the human mitochondrial genome (mtDNA) is now routinely described and used to infer the histories of peoples, by means of one of two procedures, namely, the assaying of RFLPs throughout the genome and the sequencing of parts of the control region (CR). Using 95 samples from the Near East and northwest Caucasus, we present an analysis based on(More)
The timing and number of prehistoric migrations involved in the settlement of the American continent is subject to intense debate. Here, we reanalyze Native American control region mtDNA data and demonstrate that only an appropriate phylogenetic analysis accompanied by an appreciation of demographic factors allows us to discern different migrations and to(More)
Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable(More)
A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated "relict" populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward(More)
Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized(More)
The phylogeography of Y-chromosome haplogroups E (Hg E) and J (Hg J) was investigated in >2400 subjects from 29 populations, mainly from Europe and the Mediterranean area but also from Africa and Asia. The observed 501 Hg E and 445 Hg J samples were subtyped using 36 binary markers and eight microsatellite loci. Spatial patterns reveal that (1). the two(More)
Complete sequencing of 62 mitochondrial DNAs (mtDNAs) belonging (or very closely related) to haplogroup H revealed that this mtDNA haplogroup--by far the most common in Europe--is subdivided into numerous subhaplogroups, with at least 15 of them (H1-H15) identifiable by characteristic mutations. All the haplogroup H mtDNAs found in 5,743 subjects from 43(More)
The mtDNA variation of 321 individuals from 17 Native American populations was examined by high-resolution restriction endonuclease analysis. All mtDNAs were amplified from a variety of sources by using PCR. The mtDNA of a subset of 38 of these individuals was also analyzed by D-loop sequencing. The resulting data were combined with previous mtDNA data from(More)
High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most(More)