Learn More
AIMS It has been proposed that intracellular acidosis may be the basis of the cardioprotection of different interventions, including postconditioning. However, contradictory reports exist on the effects of acidic reperfusion on myocardial salvage. Here we characterized the effect of lowering the pH of the reperfusion media (pHo) on intracellular pH (pHi)(More)
Ischemic postconditioning (PoCo) has been proven to be a feasible approach to attenuate reperfusion injury and enhance myocardial salvage in patients with acute myocardial infarction, but its mechanisms have not been completely elucidated yet. Recent studies demonstrate that PoCo may delay the recovery of intracellular pH during initial reperfusion, and(More)
Reperfusion may induce additional cell death in patients with acute myocardial infarction receiving primary angioplasty or thrombolysis. Altered intracellular Ca(2+) handling was initially considered an essential mechanism of reperfusion-induced cardiomyocyte death. However, more recent studies have demonstrated the importance of Ca(2+)-independent(More)
Previous studies suggested that prolongation of acidosis during reperfusion is protective and may be an important mechanism of postconditioning protection. The aim of this study was to analyze the therapeutic value of this intervention during in vivo coronary reperfusion, and to compare it with ischemic postconditioning. Pigs were submitted to 48 or 60 min(More)
Connexin 43 (Cx43) plays an important role in cardioprotective signalling by mechanisms at least in part independent of gap junctional communication. To investigate whether this role is related to specific properties of this connexin isoform, we used a knock-in mouse model in which the coding region of Cx43 is replaced by that of Cx32. Homozygous Cx43KI32(More)
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues,(More)
OBJECTIVE Connexin 43 (Cx43) is involved in infarct size reduction by ischemic preconditioning (IP); the underlying mechanism of protection, however, is unknown. Since mitochondria have been proposed to be involved in IP's protection, the present study analyzed whether Cx43 is localized at mitochondria of cardiomyocytes and whether such localization is(More)
We have previously shown that connexin 43 (Cx43) is present in mitochondria, that its genetic depletion abolishes the protection of ischemia- and diazoxide-induced preconditioning, and that it is involved in reactive oxygen species (ROS) formation in response to diazoxide. Here we investigated the intramitochondrial localization of Cx43, the mechanism of(More)
AIMS Connexin43 is present at the inner membrane of cardiomyocyte mitochondria (mCx43), but its function remains unknown. METHODS AND RESULTS In this study we verified the presence of mCx43 by a mass spectrometry-based proteomic approach in purified mitochondrial preparations from mouse myocardium and determined by western blot analysis that the(More)
Connexins are transmembrane proteins whose best known function is to form gap junction channels. Ventricular cardiomyocytes express the connexin isoform Cx43 and are rich in gap junctions essential for the normal propagation of the action potential. In addition to this physiological role, cardiomyocyte gap junctions contribute to the pathophysiology of(More)