Antonio Miguel Caravaca-Aguirre

Learn More
We introduce a phase-control holographic technique to characterize scattering media with the purpose of focusing light through it. The system generates computer-generated holograms implemented via a deformable mirror device (DMD) based on micro-electro-mechanical technology. The DMD can be updated at high data rates, enabling high speed wavefront(More)
Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence(More)
This work presents, to our knowledge, the first demonstration of the Laser Speckle Contrast Imaging (LSCI) technique with extended depth of field (DOF). We employ wavefront coding on the detected beam to gain quantitative information on flow speeds through a DOF extended two-fold compared to the traditional system. We characterize the system in-vitro using(More)
The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic(More)
We demonstrate enhanced three-dimensional photoacoustic imaging behind a scattering material by increasing the fluence in the ultrasound transducer focus. We enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium serves as feedback to optimize the(More)
Three-dimensional microparticle movements induced by laser beams with a funnel- and tubular pod-like structure, in the neighbourhood of the focal plane of an optical trapping setup, are experimentally studied. The funnel and pod beams constructed as coherent superpositions of helical Laguerre-Gaussian modes are synthesized by a computer generated hologram(More)
Focusing inside scattering media is a challenging task with a variety of applications in biomedicine. State of the art methods mostly require invasive feedback inside or behind the sample, limiting practical use. We present a technique for dynamic control and focusing inside scattering media that combines two powerful methods: optical coherence tomography(More)
A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from welldefined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive (surface) multiphoton approaches1,2 for deep (>2mm) structures, while Gradient Refreactive(More)
  • 1