Antonio Martínez Cegarra

Learn More
The long-known results of Schreier on group extensions are here raised to a categorical level by giving a factor set theory for torsors under a categorical group (G, ⊗) over a small category B. We show a natural bijection between the set of equivalence classes of such torsors and [B(B), B(G, ⊗)], the set of homotopy classes of continuous maps between the(More)
The rank of a commutative cancellative semigroup S is the cardinality of a maximal independent subset of S. Commutative cancellative semigroups of finite rank are subarchimedean and thus admit a Tamura-like representation. We characterize these semigroups in several ways and provide structure theorems in terms of a construction akin to the one devised by T.(More)
  • 1