Antonio Jesús Serrato

Learn More
The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary(More)
Chloroplastic thioredoxins f and m (TRX f and TRX m) mediate light regulation of carbon metabolism through the activation of Calvin cycle enzymes. The role of TRX f and m in the activation of Calvin cycle enzymes is best known among the TRX family. However, the discoveries of new potential targets extend the functions of chloroplastic TRXs to other(More)
This review offers an overview of the current state of our knowledge concerning the role of fructose-1,6-bisphosphatase (FBPase) in sugar partitioning and biosynthesis, through the analysis of genetically manipulated plants. The existence of two well-characterized isoforms is a consequence of the subcellular compartmentalization of photosynthetic(More)
Thioredoxins (TRXs) f and m are key components in the light regulation of photosynthetic metabolism via thiol-dithiol modulation in chloroplasts of leaves; however, little is known about the factors modulating the expression of these proteins. To investigate the effect of sugars as photosynthetic products on the expression of PsTRX f and m1 genes, sucrose(More)
In this study, evidence is provided for the role of fructose-1,6-bisphosphatases (FBPases) in plant development and carbohydrate synthesis and distribution by analysing two Arabidopsis thaliana T-DNA knockout mutant lines, cyfbp and cfbp1, and one double mutant cyfbp cfbp1 which affect each FBPase isoform, cytosolic and chloroplastic, respectively. cyFBP is(More)
During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing(More)
  • 1