Antonio J. Serrano

Learn More
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when(More)
Feature Selection (FS) is one of the key stages in classification problems. This paper proposes the use of the area under Receiver Operator Characteristic curves to measure the individual importance of every input as well as a method to discover the variables that yield a statistically significant improvement in the discrimination power of the(More)
A novel fuzzy-based activation function for artificial neural networks is proposed. This approach provides easy hardware implementation and straightforward interpretability in the basis of IF-THEN rules. Backpropagation learning with the new activation function also has low computational complexity. Several application examples ( XOR gate, chaotic(More)
BACKGROUND This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and(More)
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Handbook of research on machine learning applications and trends : algorithms, methods and techniques / Emilio Soria Olivas ... [et(More)
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its(More)
This paper proposes the use of neural networks for individualizing the dosage of cyclosporine A (CyA) in patients who have undergone kidney transplantation. Since the dosing of CyA usually requires intensive therapeutic drug monitoring, the accurate prediction of CyA blood concentrations would decrease the monitoring frequency and, thus, improve clinical(More)
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure undergoing periodic hemodialysis. The goal is to carry out an individualised prediction of the erythropoietin dosage to be administered. It is justified because of the high cost of this medication, its(More)
Artificial neural networks (NN) have been widely used for both prediction and classification tasks in many fields of knowledge, however, few studies are available on dairy science. In this work we use NN models to predict next week goat milk based on actual and previous milk production. A total of 35 Murciano-Granadina dairy goats were selected from a(More)