Antonio García-Martín

Learn More
A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work(More)
Surface-plasmon-mediated confinement of optical fields holds great promise for on-chip miniaturization of all-optical circuits1-4• Following successful demonstrations of passive nanoplasmonic devicess-7, active plasmonic systems have been designed to control plasmon propagation. This goal has been achieved either by coupling plasmons to optically active(More)
It is well known that localized surface plasmon resonances (LSPRs) greatly influence the optical properties of metallic nanostructures. The spectral location of the LSPR is sensitive to the shape, size, and composition of the nanostructure, as well as on the optical properties of the surrounding dielectric. The latter effect has been used to develop(More)
Metal-dielectric Au-Co-SiO(2) magnetoplasmonic nanodisks are found to exhibit large magneto-optical activity and low optical losses. The internal architecture of the nanodisks is such that, in resonant conditions, the electromagnetic field undertakes a particular spatial distribution. This makes it possible to maximize the electromagnetic field at the(More)
Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the(More)
In this Letter we show that nanostructures made out of pure noble metals can exhibit measurable magneto-optic activity at low magnetic fields. This phenomenon occurs when the localized surface plasmon resonance of the nanostructure is excited in the presence of a static magnetic field parallel to the propagation of incident light. The large magneto-optical(More)
We report that the effect of an external magnetic field on the propagation of surface plasmons can be effectively modified through the coupling between localized (LSP) and propagating (SPP) surface plasmons. When these plasmon modes do not interact, the main effect of the magnetic field is a modification of the wavevector of the SPP mode, leaving the LSP(More)
A theoretical analysis of electromagnetic forces on neutral particles in a hollow waveguide is presented. We show that the effective scattering cross section of a very small (Rayleigh) particle can be strongly modified inside a waveguide. The coupling of the scattered dipolar field with the waveguide modes induces a resonant enhanced backscattering state of(More)
The correlations between waves transmitted through random media are analyzed by use of a random-matrix approach and numerical simulations of rough waveguides. Although the intensity and conductance fluctuations are practically independent of the sample length, the correlations present a strong dependence on the length of the disordered region. In waveguide(More)