Learn More
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show(More)
Potassium-stimulated catecholamine release from superfused bovine adrenal chromaffin cells (70 mM K+ in the presence of 2 mM Ca2+ for 10 s, applied at 5-min intervals) was inhibited by the dihydropyridine furnidipine (3 microM) by 50%. omega-Conotoxin MVIIC (CTx-MVIIC, 3 microM) also reduced the secretory response by about half. Combined CTx-MVIIC plus(More)
1. The effects of externally applied micromolar concentrations of adenosine 5'-triphosphate (ATP) on Ca2+ currents (ICa) were studied in whole-cell clamped adrenaline-secreting chromaffin cells. 2. Ca2+ currents in chromaffin cells activated at about -40 mV, reached a maximum at 0 mV and had an apparent reversal potential at +50 to +60 mV, indicating the(More)
This study was undertaken to reassess the set of voltage-dependent Ca2+ channel subtypes expressed by bovine adrenal chromaffin cells maintained in primary cultures. Previous views on the pharmacology of such channels had to be revised in the light of the novel data which arose from the use in this study of low and high micromolar concentrations of(More)
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of(More)
Depolarizing 1-s pulses to 0 mV from a holding potential of -70 mV, induced whole-cell currents through Ca2+ channels (ICa) in patch-clamped cat adrenal medulla chromaffin cells. The dihydropyridine (DHP) furnidipine (3 microM) reduced the peak current by 47% and the late current by 80%. omega-Conotoxin GVIA (CgTx, 1 microM) reduced the peak ICa by 42% and(More)
The mechanism of the neuroprotective action of the tetracycline antibiotic minocycline against various neuron insults is controversial. In an attempt to clarify this mechanism, we have studied here its effects on various electrophysiological parameters, Ca(2+) signalling, and glutamate release, in primary cultures of rat hippocampal neurons, and in(More)
Donepezil, rivastigmine, and galantamine are three drugs with acetylcholinesterase (AChE)-inhibiting activity that are currently being used to treat patients suffering from Alzheimer's disease. We have studied the neuroprotective effects of these drugs, in comparison with nicotine, on cell death caused by beta-amyloid (Abeta) and okadaic acid, two models(More)
Galantamine is an acetylcholinesterase inhibitor and memantine is a non competitive antagonist of NMDA receptors that are being used to treat Alzheimer's disease (AD) patients. The fact that drugs with different mechanisms of action are available to treat AD introduces the prospect of prescribing drug combinations to amplify drug efficacy. This study was(More)
Methyllycaconitine (MLA), alpha-conotoxin ImI, and alpha-bungarotoxin inhibited the release of catecholamines triggered by brief pulses of acetylcholine (ACh) (100 microM, 5 s) applied to fast-superfused bovine adrenal chromaffin cells, with IC50s of 100 nM for MLA and 300 nM for alpha-conotoxin ImI and alpha-bungarotoxin. MLA (100 nM), alpha-conotoxin ImI(More)