Antonio F. Monroy

Learn More
When alfalfa (Medicago sativa L. cv Apica) plants grown at room temperature are transferred to 2 degrees C, the temperature at which 50% of the plants fail to survive (LT50) decreases from -6 to -14 degrees C during the first 2 weeks but then increases to -9 degrees C during the subsequent 2 weeks. However, when plants are kept for 2 weeks at 2 degrees C(More)
To study the role of calcium in cold acclimation, we examined the relationship between calcium influx and accumulation of transcripts of two cas (cold acclimation-specific) genes of alfalfa, cas15 and cas18. Whereas a decline in temperature from 25 to 15 degrees C had little effect on the influx of extracellular 45Ca2+, an increasing influx was observed(More)
Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken(More)
The involvement of calcium signaling during cold-induction of the kin genes of Arabidopsis thaliana (L.) Heynh. was examined. Treatments with chemicals which either chelate extracellular calcium (EGTA) or block the plasma-membrane calcium channels (La3+, Gd3+) inhibited cold acclimation as well as kin gene expression. Ruthenium red, an inhibitor of calcium(More)
Freezing tolerance in plants develops through acclimation to cold by growth at low, above-freezing temperatures. Wheat is one of the most freezing-tolerant plants among major crop species and the wide range of freezing tolerance among wheat cultivars makes it an excellent model for investigation of the genetic basis of cold tolerance. Large numbers of genes(More)
Freezing tolerance in plants is a complex trait that occurs in many plant species during growth at low, nonfreezing temperatures, a process known as cold acclimation. This process is regulated by a multigenic system expressing broad variation in the degree of freezing tolerance among wheat cultivars. Microarray analysis is a powerful and rapid approach to(More)
The authors have previously shown that cold acclimation and cold acclimation-specific (cas) gene expression in alfalfa require cold-triggered calcium influx and phosphorylation of specific pre-existing proteins. In this study, the authors used the expression of cas15 gene as an end-point marker to examine the role of protein phosphorylation in low(More)
We have previously shown that the wheat (Triticum aestivum) TaADF gene expression level is correlated with the plants capacity to tolerate freezing. Sequence analysis revealed that this gene encodes a protein homologous to members of the actin-depolymerizing factor (ADF)/cofilin family. We report here on the characterization of the recombinant TaADF(More)
Activities of prevalent protein phosphatases decreased by nearly 95% and those of individual protein kinases were differentially reduced at low temperature. Inhibition of phosphatase activity at temperatures below 12 degrees C resulted in marked hyperphosphorylation of a 58-kDa protein (PP58). The temperature threshold for hyperphosphorylation of PP58(More)
The present study was undertaken to determine whether vacuolar H(+)-pyrophosphatase (V-PPase) might replace vacuolar H(+)-ATPase under energy stress due to anoxia or chilling in anoxia-tolerant species such as rice (Oryza sativa L.) and corn (Zea mays L.). The relative transcript level of V-PPase in rice seedlings, like that of alcohol dehydrogenase 1,(More)