Antonio Di Cristofano

Learn More
The PTEN gene encodes a dual-specificity phosphatase mutated in a variety of human cancers. PTEN germline mutations are found in three related human autosomal dominant disorders, Cowden disease (CD), Lhermitte-Duclos disease (LDD) and Bannayan-Zonana syndrome (BZS), characterized by tumour susceptibility and developmental defects. To examine the role of(More)
Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten(More)
Inactivating mutations in the PTEN tumor suppressor gene, encoding a phosphatase, occur in three related human autosomal dominant disorders characterized by tumor susceptibility. Here it is shown that Pten heterozygous (Pten+/-) mutants develop a lethal polyclonal autoimmune disorder with features reminiscent of those observed in Fas-deficient mutants.(More)
The genetic bases underlying prostate tumorigenesis are poorly understood. Inactivation of the tumor-suppressor gene PTEN and lack of p27(KIP1) expression have been detected in most advanced prostate cancers. But mice deficient for Cdkn1b (encoding p27(Kip1)) do not develop prostate cancer. PTEN activity leads to the induction of p27(KIP1) expression, which(More)
We utilized gene targeting by homologous recombination to define the role that MEF, a transcriptional activating member of the ETS family of transcription factors, plays in lymphopoiesis. MEF-/- mice have a profound reduction in the number of NK-T and NK cells. Purified MEF-/- NK cells cannot lyse tumor cell targets and secrete only minimal amounts of(More)
The AKT1, AKT2, and AKT3 kinases have emerged as critical mediators of signal transduction pathways downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase. An ever-increasing list of AKT substrates has precisely defined the multiple functions of this kinase family in normal physiology and disease states. Cellular processes regulated by(More)
The tumor suppressor PTEN is frequently inactivated in human cancers. A major downstream effector of PTEN is Akt, which is hyperactivated via PTEN inactivation. It is not known, however, whether diminished Akt activity is sufficient to inhibit tumorigenesis initiated by Pten deficiency. Here we showed that the deficiency of Akt1 is sufficient to(More)
Activation of AKT and overexpression of fatty acid synthase (FAS) are frequently observed in human ovarian cancer. To explore a possible connection between AKT and FAS, immunohistochemical analyses were conducted on an ovarian cancer tissue microarray, which revealed a significant correlation between phosphorylated AKT (phospho-AKT) and expression of FAS.(More)
Loss of PTEN is the earliest detectable genetic lesion in the endometrioid subtype of endometrial cancer (EEC), a tumor thought to be associated with an increase in unopposed estrogen activity. Pten(+/-) mice develop endometrial neoplastic lesions with full penetrance, despite having normal estrogen levels. We have utilized oligonucleotide arrays to(More)
PTEN is a lipid phosphatase, and PTEN mutations are associated with gliomas, macrocephaly, and mental deficiencies. We have used PTEN +/- mice to assess PTEN's role in subventricular zone (SVZ) precursor cells. For cultured SVZ neurosphere cells, haploinsufficiency for PTEN increases phosphorylation of Akt and forkhead transcription factor and slightly(More)