Learn More
Ryanodine receptors (RyRs) are intracellular calcium release channels that participate in controlling cytosolic calcium levels. At variance with the probably ubiquitous inositol 1,4,5-trisphosphate-operated calcium channels (1,4,5-trisphosphate receptors), RyRs have been mainly regarded as the calcium release channels controlling skeletal and cardiac muscle(More)
Single-channel analysis of sarcoplasmic reticulum vesicles prepared from diaphragm muscle, which contains both RyR1 and RyR3 isoforms, revealed the presence of two functionally distinct ryanodine receptor calcium release channels. In addition to channels with properties typical of RyR1 channels, a second population of ryanodine-sensitive channels with(More)
The skeletal isoform of Ca2+ release channel, RyR1, plays a central role in activation of skeletal muscle contraction. Another isoform, RyR3, has been observed recently in some mammalian skeletal muscles, but whether it participates in regulating skeletal muscle contraction is not known. The expression of RyR3 in skeletal muscles was studied in mice from(More)
Traumatic brain injury (TBI), like other central nervous system pathologies, causes changes in the composition of cerebrospinal fluid (CSF). Consequently analysis of the CSF components is important to better understand the pathological processes involved in such diseases. The aim of this work was to identify specific markers of severe TBI. Proteomic(More)
Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long-term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal(More)
Activation of intracellular Ca(2+)-release channels/ryanodine receptors (RyRs) is a fundamental step in the regulation of muscle contraction. In mammalian skeletal muscle, Ca(2+)-release channels containing the type 1 isoform of RyR (RyR1) open to release Ca2+ from the sarcoplasmic reticulum (SR) upon stimulation by the voltage-activated dihydropyridine(More)
Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human(More)
cADPR, a potent calcium-mobilizing intracellular messenger synthesized by ADP-ribosyl cyclases regulates openings of ryanodine receptors (RyR). Here we report that in the rat testis, a functional cADPR Ca2+ release system is essential for the contractile response of peritubular smooth muscle cells (PSMC) to endothelin (ET). We previously showed that this(More)
The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal(More)
We used a proteomic approach for identifying molecules involved in the pathogenesis of chronic lymphocytic leukemia (CLL). We investigated 14 patients who were completely concordant for IgV(H) mutational status (unmutated vs. mutated), CD38 expression (positive vs. negative), and clinical behavior (progressive vs. stable); these patients were characterized(More)