Antonio Conti

Marco Barbariga2
Giuseppe Magnani2
2Marco Barbariga
2Giuseppe Magnani
Learn More
Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human(More)
The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal(More)
We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and(More)
Ceruloplasmin, a ferroxidase present in cerebrospinal fluid (CSF), plays a role in iron homeostasis protecting tissues from oxidative damage. Its reduced enzymatic activity was reported in Parkinson’s disease (PD) contributing to the pathological iron accumulation. We previously showed that ceruloplasmin is modified by oxidation in vivo, and, in addition,(More)
  • 1