Antonio Cipiciani

Learn More
Phenylalanine ammonia-lyase (PAL) catalyzes the beta-elimination of ammonia from L-phenylalanine to trans-cinnamic acid. A study of inhibition of PAL by phenol, ortho-cresol, and meta-cresol gave mixed inhibition; para-cresol is not an inhibitor. The calculated values of K(i) and alphaK(i) are phenol, K(i)=2.1+/-0.5 mM and alphaK(i)=3.45+/-0.95 mM;(More)
We investigated the adsorption and catalytic activity of myoglobin (Mb) immobilized on colloidal particles of zirconia covalently grafted with phosphoric (ZrO2-P) and benzenephosphonic acid (ZrO2-BP). The maximum adsorption was reached after 1 h of contact and was greater on a hydrophilic support, ZrO2-P, compared to a hydrophobic support, ZrO2-BP. The(More)
The kinetics of hydrolysis of indomethacin and related compounds was studied in an alkaline medium at 25 degrees C in the presence of anionic (sodium dodecyl sulfate) and cationic (hexadecyltrimethylammonium bromide) surfactants. The rate-surfactant profiles for rate inhibition in the presence of sodium dodecyl sulfate and rate enhancement in the presence(More)
The kinetics of the hydrolysis of indomethacin and related compounds were studied in an alkaline medium at 25 degrees. The pseudo-first-order rate constants were evaluated from log absorbance versus time plots in the ultraviolet. These compounds showed a second-order rate constant at low concentrations of hydroxide ion and a first-order rate constant at(More)
Porous zirconium phosphate (P-ZrP) and zirconium benzenephosphonate (P-ZrBP) were prepared in the presence of an anionic surfactant acting as a template. Poorly crystalline materials with a P/Zr molar ratio equal to 2 and having a relatively high surface area and micro/mesoporosity have been obtained. The interaction of myoglobin with the two types of(More)
The adsorption of myoglobin (Mb) onto nanosized nickel aluminum hydrotalcite (NiAl-HTlc) surface was studied, and the structural properties of the resulting protein layer were analyzed by using FT-IR, Raman, and fluorescence spectroscopies. Upon adsorption onto the nanoparticle surface, the protein molecules maintained their secondary structure, while the(More)
Nanosized hydrotalcite-like compounds (HTlc) with different chemical composition were prepared and used to study protein adsorption. Two soft proteins, myoglobin (Mb) and bovine serum albumin (BSA), were chosen to investigate the nature of the forces controlling the adsorption and how these depend on the chemical composition of the support. Both proteins(More)
The adsorption of myoglobin (Mb) onto phosphate grafted-zirconia (ZrO2-P) nanoparticles was studied in terms of conformational studies and thermal stability, determined by circular dichroism (CD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). The changes in protein structure have been correlated with the catalytic activity of(More)
Colloidal aqueous dispersions of nanometric NiAl, ZnAl, NiCr, ZnCr, NiFe, and MgFe hydrotalcite-like compounds were prepared in a water/cetyltrimethylammonium bromide/n-butanol/isooctane microemulsion. Particle sizes were analyzed with different techniques, and the results confirm dimensions between 10 and 30 nm, except for ZnAl-HTlc (150-200 nm). A good(More)
The adsorption and catalytic activity of myoglobin (Mb) on zirconium phosphonates (a-zirconium benzenephosphonate (alpha-ZrBP), a-zirconium carboxyethanephosphonate (alpha-ZrCEP), and a novel layered zirconium fluoride aminooctyl-N,N-bis(methylphosphonate) (ZrC8)) were investigated. The maximum adsorption was reached after 16 h of contact and was greater on(More)