Learn More
DiGeorge syndrome is characterized by cardiovascular, thymus and parathyroid defects and craniofacial anomalies, and is usually caused by a heterozygous deletion of chromosomal region 22q11.2 (del22q11) (ref. 1). A targeted, heterozygous deletion, named Df(16)1, encompassing around 1 megabase of the homologous region in mouse causes cardiovascular(More)
Coronary arteries bring blood flow to the heart muscle. Understanding the developmental program of the coronary arteries provides insights into the treatment of coronary artery diseases. Multiple sources have been described as contributing to coronary arteries including the proepicardium, sinus venosus (SV), and endocardium. However, the developmental(More)
TBX1 is thought to be a critical gene in the pathogenesis of del22q11/DiGeorge syndrome (DGS). Morphological abnormalities of the external ear and hearing impairment (conductive or sensorineural) affect the majority of patients. Here we show that homozygous mutation of the mouse homolog Tbx1 is associated with severe inner ear defects that prevent the(More)
The heterozygous chromosome deletion within the band 22q11 (del22q11) is an important cause of congenital cardiovascular defects. It is the genetic basis of DiGeorge syndrome and causes the most common deletion syndrome in humans. Because the deleted region is largely conserved in the mouse, we were able to engineer a chromosome deletion (Df1) spanning a(More)
Del22q11 syndrome is caused by heterozygous deletion of an approximately 3 Mb segment of chromosome 22q11.2. Children diagnosed with del22q11 syndrome commonly have learning difficulties, deficits of motor development, cognitive defects and attention deficit disorder. They also have a higher than normal risk for developing psychiatric disorders, mainly(More)
Mutations of the Wnt5a gene, encoding a ligand of the non-canonical Wnt pathway, and the Ror2 gene, encoding its receptor, have been found in patients with cardiac outflow tract defects. We found that Wnt5a is expressed in the second heart field (SHF), a population of cardiac progenitor cells destined to populate the cardiac outflow tract and the right(More)
We have identified a 26.5 kb gene-rich duplication shared by human Xq28 and 16p11.1. Complete comparative sequence analysis of cosmids from both loci has revealed identical Xq28 and 16p11.1 genomic structures for both the human creatine transporter gene (SLC6A8) and five exons of the CDM gene (DXS1357E). Overall nucleotide similarity within the duplication(More)
As the genomic basis for Down syndrome (DS), human trisomy 21 is the most common genetic cause of intellectual disability in children and young people. The genomic regions on human chromosome 21 (Hsa21) are syntenic to three regions in the mouse genome, located on mouse chromosome 10 (Mmu10), Mmu16, and Mmu17. Recently, we have developed three new mouse(More)
Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse(More)
Tbx1 is a T-box transcription factor implicated in DiGeorge syndrome. The molecular function of Tbx1 is unclear although it can transactivate reporters with T-box binding elements. We discovered that Tbx1 binds Smad1 and suppresses the Bmp4/Smad1 signaling. Tbx1 interferes with Smad1 to Smad4 binding, and a mutation of Tbx1 that abolishes transactivation,(More)