Antonio Artés-Rodríguez

Learn More
Crowdsourcing has been proven to be an effective and efficient tool to annotate large data-sets. User annotations are often noisy, so methods to combine the annotations to produce reliable estimates of the ground truth are necessary. We claim that considering the existence of clusters of users in this combination step can improve the performance. This is(More)
In this paper, we present a novel scheme for linear feature extraction in classification. The method is based on the maximization of the mutual information (MI) between the features extracted and the classes. The sum of the MI corresponding to each of the features is taken as an heuristic that approximates the MI of the whole output vector. Then, a(More)
—This paper presents a new approach to auto-regres-sive and moving average (ARMA) modeling based on the support vector method (SVM) for identification applications. A statistical analysis of the characteristics of the proposed method is carried out. An analytical relationship between residuals and SVM-ARMA coefficients allows the linking of the fundamentals(More)
The cerebellar model articulation controller (CMAC) is a simple and fast neural-network based on local approximations. However, its rigid structure reduces its accuracy of approximation and speed of convergence with heterogeneous inputs. In this paper, we propose a generalized CMAC (GCMAC) network that considers different degrees of generalization for each(More)
In this paper, we propose a general technique for solving support vector classifiers (SVCs) for an arbitrary loss function, relying on the application of an iterative reweighted least squares (IRWLS) procedure. We further show that three properties of the SVC solution can be written as conditions over the loss function. This technique allows the(More)
An iterative block training method for support vector classifiers (SVCs) based on weighted least squares (WLS) optimization is presented. The algorithm, which minimizes structural risk in the primal space, is applicable to both linear and nonlinear machines. In some nonlinear cases, it is necessary to previously find a projection of data onto an(More)
The following copyright notice must be displayed on the first page of any paper copy reproduction of IEEE-copyrighted material or on the initial screen displaying IEEE-copyrighted material electronically: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating(More)