Antonino Licciardello

Learn More
A fundamental goal in the field of implantology is the design of innovative devices suitable for promoting implant-to-tissue integration. This result can be achieved by means of surface modifications aimed at optimizing tissue regeneration. In the framework of oral and orthopedic implantology, surface modifications concern both the optimization of(More)
One of the main goals of molecular electronics is to achieve electronic functions from devices consisting of tailored organic molecules connecting two metal electrodes. The fabrication of nanometre-scale spaced electrodes still results in expensive, and often scarcely reproducible, devices. On the other hand, the 'conductance' of long organic(More)
Organic depth profiling using secondary ion mass spectrometry (SIMS) provides valuable information about the three-dimensional distribution of organic molecules. However, for a range of materials, commonly used cluster ion beams such as C60(n+) do not yield useful depth profiles. A promising solution to this problem is offered by the use of nitric oxide(More)
RATIONALE Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of(More)
Protein adsorption plays a key role in the biological response to implants. We report how nanoscale topography, chemistry, crystallinity, and molecular chain anisotropy of ultrahigh molecular weight polyethylene (UHMWPE) surfaces affect the protein assembly and induce lateral orientational order. We applied ultraflat, melt drawn UHMWPE films to show that(More)
Microperoxidase-11 (MP-11) was first soft landed onto the gold surface of a screen-printed electrode. Intact protein deposition was verified by time-of-flight secondary ion mass spectrometry. The coupling of soft landing with electrochemical techniques allowed unique information to be obtained about the deposition features. A full characterization of the(More)
A terpyridine-functionalized perylene bisimide chromophore (TPBI) has been used as a building block in the stepwise, layer-by-layer fabrication of self-assembled Fe-TPBI multilayers on gold, with the assembled supramolecular chains oriented approximately perpendicular to the gold surface. Time-resolved spectroscopy measurements seem to indicate that the(More)
The new heptanuclear ruthenium(II) dendron, [Cl(2)Ru{(micro-2,3dpp)Ru[(micro-2,3-dpp)Ru(bpy)2]2}2](PF6)12 (1; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine; bpy = 2,2'-bipyridine), was prepared by means of the "complexes as ligands/complexes as metals" synthetic strategy, and its absorption spectrum, redox behavior, and luminescence properties were investigated.(More)