Antonella Iacovone

  • Citations Per Year
Learn More
A number of heterocycles bearing an arylpiperazinylalkyl side chain and structurally related to the previously described lead ET1 (4-amino-6-methyl-2-[3-(4-p-tolylpiperazin-1-yl)propyl]-5-vinylpyridazin-3(2H)-one) was synthesized and tested for their antinociceptive activity in Writhing Test. Many compounds, tested at doses of 20-40 mg/kg po were able to(More)
Human neutrophil elastase (HNE) is an important target for the development of novel and selective inhibitors to treat inflammatory diseases, especially pulmonary pathologies. Here, we report the synthesis, structure-activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with an isoxazol-5(2H)-one scaffold. The most(More)
Compounds that can act on GABAA receptor subtype in selective manner, without the side effects of classical benzodiazepine ligands, represent promising therapeutic tools in neurological disorder, as well as for relief of pain or in comorbidity of anxiety states and depression. Continuing our research on GABAA receptor subtype ligands, here is reported the(More)
Preclinical Research A number of N-benzoylindoles were designed and synthesized as deaza analogs of previously reported potent and selective HNE inhibitors with an indazole scaffold. The new compounds containing substituents and functions that were most active in the previous series were active in the micromolar range (the most potent had IC50  = 3.8 μM) or(More)
Preclinical Research Formyl peptide receptors (FPRs) are G-protein-coupled receptors that play an important role in the regulation of inflammatory process and cellular dysfunction. In humans, three different isoforms are expressed (FPR1, FPR2, and FPR3). FPR2 appears to be directly involved in the resolution of inflammation, an active process carried out by(More)
N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that play key roles in modulating immune cells. FPRs represent potentially important therapeutic targets for the development of drugs that could enhance endogenous anti-inflammation systems associated with various pathologies, thereby reducing the progression of(More)
  • 1