Antone L. Brooks

Learn More
The estimation of the magnitude of a dose of ionizing radiation to which an individual has been exposed (or of the plausibility of an alleged exposure) from chromosomal aberration frequencies determined in peripheral blood lymphocyte cultures is a well-established methodology, having first been employed over 25 years ago. The cytogenetics working group has(More)
This study compared the pulmonary carcinogenicities and selected noncancer effects produced by chronic exposure of rats at high rates to diesel exhaust and carbon black. The comparison was intended to provide insight into the likely importance of the mutagenic organic compounds associated with the soot portion of diesel exhaust in inducing pulmonary(More)
Relative biological effectiveness (RBE) for chromosome damage in liver cells was determined after low dose rate exposures to alpha, beta, or gamma irradiation. Protracted exposures to beta and gamma irradiation were equally effective, whereas low dose rate exposures to alpha emitters were 15 to 20 times more damaging than exposures to beta or gamma(More)
While radiation health risks at low doses have traditionally been estimated from high-dose studies, we have reviewed recent literature and concluded that the mechanisms of action for many biological endpoints may be different at low doses from those observed at high doses; that acute doses <100 mSv may be too small to allow epidemiological detection of(More)
PURPOSE This review is to evaluate the use of biomarkers as an indication of past exposure to radiation or other environmental insults, individual sensitivity and risk for the development of late occurring disease. OVERVIEW Biomarkers can be subdivided depending on their applications. Markers of exposure and dose can be used to reconstruct and predict(More)
Research to determine the effects of defined numbers of alpha particles on individual mammalian cells is helpful in understanding risks associated with exposure to radon. This paper reports the first biological data generated using the single-particle/single-cell irradiation system developed at Pacific Northwest Laboratory. Using this apparatus, CHO-K1(More)
Understanding how cellular damage produced by high-linear energy transfer (LET) radiation interacts with that produced by low-LET is important both in radiation therapy and in evaluating risk. To study such interactions, rat lung epithelial cells (LEC) were grown on Mylar films and exposed to both X-rays and alpha-particles, separately or simultaneously.(More)
The observation of bystander effects in vitro have raised some serious questions as to the appropriate target size for calculation radiation dose. This has implications on the risk from ionizing radiation since dose is often directly related to radiation risk. This paper demonstrates that bystander effects do occur in vivo. It demonstrates that at low dose(More)
To evaluate the influence of low-dose-rate exposures on biological damage, it is necessary to have cells that can be maintained in the same stage of the cell cycle for long periods. Normal rat lung fibroblasts represent a stable cell type with a slow turnover rate in vivo. These cells can be stimulated to divide by placing them in tissue culture. Therefore,(More)