Learn More
—We consider the problem of estimating parameters of a model described by an equation of special form. Specific models arise in the analysis of a wide class of computer vision problems, including conic fitting and estimation of the fundamental matrix. We assume that noisy data are accompanied by (known) covariance matrices characterising the uncertainty of(More)
Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated their advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in(More)
Recent advances in semantic image segmentation have mostly been achieved by training deep convolutional neural networks (CNNs). We show how to improve semantic segmentation through the use of contextual information, specifically, we explore 'patch-patch' context between image regions, and 'patch-background' context. For learning from the patch-patch(More)
Fast nearest neighbor searching is becoming an increasingly important tool in solving many large-scale problems. Recently a number of approaches to learning data-dependent hash functions have been developed. In this work, we propose a column generation based method for learning data-dependent hash functions on the basis of proximity comparison information.(More)
Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices(More)
The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite.(More)
We propose an effective structured learning based approach to the problem of person re-identification which outperforms the current state-of-the-art on most benchmark data sets evaluated. Our framework is built on the basis of multiple low-level hand-crafted and high-level visual features. We then formulate two optimization algorithms, which directly(More)
The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed(More)
Most existing approaches to hashing apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of the method to respond to the data, and can result in complex optimization problems that are difficult to solve. Here we propose a flexible yet simple(More)
We propose a simple yet effective approach to the problem of pedestrian detection which outperforms the current state-of-the-art. Our new features are built on the basis of low-level visual features and spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. We then directly(More)