Learn More
When tracking multiple targets in crowded scenarios, modeling mutual exclusion between distinct targets becomes important at two levels: (1) in data association, each target observation should support at most one trajec-tory and each trajectory should be assigned at most one observation per frame; (2) in trajectory estimation, two trajectories should remain(More)
Many recent advances in multiple target tracking aim at finding a (nearly) optimal set of trajectories within a temporal window. To handle the large space of possible trajectory hypotheses, it is typically reduced to a finite set by some form of data-driven or regular discretization. In this work, we propose an alternative formulation of multitarget(More)
—In the recent past, the computer vision community has developed centralized benchmarks for the performance evaluation of a variety of tasks, including generic object and pedestrian detection, 3D reconstruction, optical flow, single-object short-term tracking, and stereo estimation. Despite potential pitfalls of such benchmarks, they have proved to be(More)
Evaluating multi-target tracking based on ground truth data is a surprisingly challenging task. Erroneous or ambiguous ground truth annotations, numerous evaluation protocols, and the lack of standardized benchmarks make a direct quantitative comparison of different tracking approaches rather difficult. The goal of this paper is to raise awareness of common(More)
People tracking in crowded real-world scenes is challenging due to frequent and long-term occlusions. Recent tracking methods obtain the image evidence from object (people) detectors, but typically use off-the-shelf detectors and treat them as black box components. In this paper we argue that for best performance one should explicitly train people detectors(More)
Tracking-by-detection has proven to be the most successful strategy to address the task of tracking multiple targets in unconstrained scenarios [e.g. 40, 53, 55]. Traditionally, a set of sparse detections, generated in a preprocessing step, serves as input to a high-level tracker whose goal is to correctly associate these " dots " over time. An obvious(More)
The aim of this study was: (1) to assess the energy cost of swimming (C(s), kJ km(-1)) in a group of male (n = 5) and female (n = 5) elite swimmers specialised in long-distance competitions; (2) to evaluate the possible effect of a 2-km trial on the absolute value of C(s). C(s) was assessed during three consecutive 400-m trials covered in a 50-m pool at(More)
—Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important guides for reseach. Recently, a new benchmark for Multiple Object Tracking, MOTChallenge, was launched with(More)
In this paper, we revisit the joint probabilistic data association (JPDA) technique and propose a novel solution based on recent developments in finding the m-best solutions to an integer linear program. The key advantage of this approach is that it makes JPDA computationally tractable in applications with high target and/or clutter density, such as spot(More)
The task of tracking multiple targets is often addressed with the so-called tracking-by-detection paradigm, where the first step is to obtain a set of target hypotheses for each frame independently. Tracking can then be regarded as solving two separate, but tightly coupled problems. The first is to carry out data association, i.e., to determine the origin(More)