Learn More
Spindle elongation in anaphase of mitosis is a cell cycle-regulated process that requires coordination between polymerization, cross-linking, and sliding of microtubules (MTs). Proteins that assemble at the spindle midzone may be important for this process. In this study, we show that Ase1 and the separase-Slk19 complex drive midzone assembly in yeast.(More)
The directed migration of cell collectives is a driving force of embryogenesis. The predominant view in the field is that cells in embryos navigate along pre-patterned chemoattractant gradients. One hypothetical way to free migrating collectives from the requirement of long-range gradients would be through the self-generation of local gradients that travel(More)
The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein(More)
During mitosis in Saccharomyces cerevisiae, senescence factors such as extrachromosomal ribosomal DNA circles (ERCs) are retained in the mother cell and excluded from the bud/daughter cell. Shcheprova et al. proposed a model suggesting segregation of ERCs through their association with nuclear pore complexes (NPCs) and retention of pre-existing NPCs in the(More)
SUMMARY Asymmetric cell division in unicellular organisms enables sequestration of senescence factors to specific subpopulations. Accumulation of autonomously replicating sequence (ARS) plasmids, which frequently emerge from recombination within the highly repetitive ribosomal DNA locus, is linked to limited replicative life span of Saccharomyces cerevisiae(More)
Gene tagging facilitates systematic genomic and proteomic analyses but chromosomal tagging typically disrupts gene regulatory sequences. Here we describe a seamless gene tagging approach that preserves endogenous gene regulation and is potentially applicable in any species with efficient DNA double-strand break repair by homologous recombination. We(More)
Cdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a(More)
BACKGROUND Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell - which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles -(More)
The SWAp-Tag (SWAT) strategy is also suitable for C′ protein tagging and swapping. (a) The C' Swap-tag (SWAT) acceptor tagging module contains several components: the restriction site for the I-SceI endonuclease (SceI), a URA3 selection marker (URA3), a truncated Hygromycin B selection marker (HYGn), and a generic terminator, and are flanked by two generic(More)
The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist, as their construction is extremely expensive and laborious. To overcome these limitations,(More)