Learn More
WebFR3D is the on-line version of 'Find RNA 3D' (FR3D), a program for annotating atomic-resolution RNA 3D structure files and searching them efficiently to locate and compare RNA 3D structural motifs. WebFR3D provides on-line access to the central features of FR3D, including geometric and symbolic search modes, without need for installing programs or(More)
The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and(More)
The Nucleic Acid Database (NDB) (http://ndbserver.rutgers.edu) is a web portal providing access to information about 3D nucleic acid structures and their complexes. In addition to primary data, the NDB contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for(More)
Base triples are recurrent clusters of three RNA nucleobases interacting edge-to-edge by hydrogen bonding. We find that the central base in almost all triples forms base pairs with the other two bases of the triple, providing a natural way to geometrically classify base triples. Given 12 geometric base pair families defined by the Leontis-Westhof(More)
In this feature article, we provide a side-by-side introduction for two research fields: quantum chemical calculations of molecular interaction in nucleic acids and RNA structural bioinformatics. Our main aim is to demonstrate that these research areas, while largely separated in contemporary literature, have substantial potential to complement each other(More)
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in(More)
Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same(More)
Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic(More)
The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align(More)
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA(More)
  • 1