Antoine Villesuzanne

Learn More
The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as(More)
The temperature dependence of the optical and magnetic properties of CuO were examined by means of hybrid density functional theory calculations. Our work shows that the spin exchange interactions in CuO are neither fully one-dimensional nor fully three-dimensional. The temperature dependence of the optical band gap and the (63)Cu nuclear quadrupole(More)
The olivine-type compounds LiMPO4 (M = Mn, Fe, Co, Ni) consist of MO4 layers made up of corner-sharing MO6 octahedra of high-spin M2+ ions. To gain insight into the magnetic properties of these phosphates, their spin exchange interactions were estimated by spin dimer analysis using tight binding calculations and by electronic band structure analysis using(More)
In the (MM'O6)infinity chains of the transition-metal magnetic oxides Ca3MM'O6 the MO6 trigonal prisms alternate with the M'O6 octahedra by sharing their triangular faces. In the (Co(2O6)infinity chains of Ca3Co2O6 (M = M' = Co) the spins are coupled ferromagnetically, but in the (FeRhO6)infinity chains of Ca3FeRhO6 (M = Fe, M' = Rh) they are coupled(More)
We report on various nanocarbons formed from a unique structural pattern containing two pentagons, three hexagons, and two heptagons, resulting from local rearrangements around a divacancy in pristine graphene, or nanotubes. This defect can be inserted in sheets or tubes either individually or as extended defect lines. Sheets or tubes containing only this(More)
A theoretical study of the lithium intercalated LiMSO(4)F and deintercalated MSO(4)F systems, where M = Fe, Co and Ni has been performed within the framework of density functional theory. Beyond predictions of structural evolution and average voltages versus a lithium electrode, we have applied partial density of states and Bader's topological analysis of(More)
Ce-doped Rb2 KInF6 elpasolite has the potential for tunable luminescence due to an unusual reversible redox process between the cerium and indium cations. Coupled with a deep understanding of the luminescence properties, XRD analysis and DFT calculations are used to locate the doping elements in the host lattice. The origin explanation of the(More)
While approaching a Mott-Hubbard transition by hole doping of the pristine La(2)CuO(4) cuprate, excitons are created because of exciton-exciton and exciton-doping hole stabilizing interactions. Here, excitons are of charge-transfer Frenkel-type, with effective Cu(+)O(-) electrical dipoles that solvate the doping charges. Assuming a moderate screening by(More)
A new phase [PtIn6](GeO4)2O, a filled variant of [PtIn6](GaO4)2, and the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) were prepared and characterized. Single-crystal structure refinements show that [PtIn6](GeO4)2O is isotypic with the mineral, sulfohalite Na6FCl(SO4)2, and crystallizes in the space group Fmm (Z = 4) with a = 1006.0(1)(More)