Antoine Snijders

Learn More
We have assembled arrays of approximately 2,400 BAC clones for measurement of DNA copy number across the human genome. The arrays provide precise measurement (s.d. of log2 ratios=0.05-0.10) in cell lines and clinical material, so that we can reliably detect and quantify high-level amplifications and single-copy alterations in diploid, polyploid and(More)
The development of solid tumors is associated with acquisition of complex genetic alterations, indicating that failures in the mechanisms that maintain the integrity of the genome contribute to tumor evolution. Thus, one expects that the particular types of genomic alterations seen in tumors reflect underlying failures in maintenance of genetic stability,(More)
We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not(More)
DNA microarrays are now widely used to measure expression levels and DNA copy number in biological samples. Ratios of relative abundance of nucleic acids are derived from images of regular arrays of spots containing target genetic material to which fluorescently labeled samples are hybridized. Whereas there are a number of methods in use for the(More)
Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though(More)
Genomes of solid tumors are characterized by gains and losses of regions, which may contribute to tumorigenesis by altering gene expression. Often the aberrations are extensive, encompassing whole chromosome arms, which makes identification of candidate genes in these regions difficult. Here, we focused on narrow regions of gene amplification to facilitate(More)
Genome-wide microarray-based comparative genomic hybridization (array CGH) was used to identify common chromosomal alterations involved in cervical carcinogenesis as a first step towards the discovery of novel biomarkers. The genomic profiles of nine squamous cell carcinomas (SCCs) and seven adenocarcinomas (AdCAs), as well as four human papillomavirus(More)
Amplifications, regions of focal high-level copy number change, lead to overexpression of oncogenes or drug resistance genes in tumors. Their presence is often associated with poor prognosis; however, the use of amplification as a mechanism for overexpression of a particular gene in tumors varies. To investigate the influence of genome position on(More)
We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial).(More)
PURPOSE The genomic instability in colon cancer can be divided into at least two major types, microsatellite instability (MSI) or chromosomal instability (CIN). Although initially felt to be mutually exclusive, recent evidence suggests that there may be overlap between the two. The aim of this study was to identify chromosomal alterations at high resolution(More)