Antoine Guisan

Learn More
Jane Elith*, Catherine H. Graham*, Robert P. Anderson, Miroslav Dudı́k, Simon Ferrier, Antoine Guisan, Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lucia G. Lohmann, Bette A. Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob McC. Overton, A. Townsend Peterson, Steven J. Phillips, Karen(More)
Antoine Guisan and Wilfried Thuiller Laboratoire de Biologie de la Conservation (LBC), Département d’Ecologie et d’Evolution (DEE), Université de Lausanne, Bâtiment de Biologie, CH-1015 Lausanne, Switzerland Climate Change Research Group, Kirstenbosh Research Center, South African National Biodiversity Institute, Post Bag x7, Claremont 7735, Cape Town,(More)
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs /GAMs modeling: from species distribution to(More)
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the(More)
The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant(More)
A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this(More)
Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species’ range shifts, changes in phenology and species’ extinctions,(More)
Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models(More)