Learn More
This paper presents a novel control strategy, which we call optiPilot, for autonomous flight in the vicinity of obstacles. Most existing autopilots rely on a complete 6-degree-of-freedom state estimation using a GPS and an In-ertial Measurement Unit (IMU) and are unable to detect and avoid obstacles. This is a limitation for missions such as surveillance(More)
We aim at developing ultralight autonomous microflyers capable of navigating within houses or small built environments. Our latest prototype is a fixed-wing aircraft weighing a mere 10 g, flying around 1.5 m/s and carrying the necessary electronics for airspeed regulation and collision avoidance. This microflyer is equipped with two tiny camera modules, two(More)
We aim at developing ultralight autonomous microflyers capable of freely flying within houses or small built environments while avoiding collisions. Our latest prototype is a fixed-wing aircraft weighing a mere 10 g, flying around 1.5 m/s and carrying the necessary electronics for airspeed regulation and lateral collision avoidance. This microflyer is(More)
Acknowledgements I owe many thanks to my adviser, Prof. Dario Floreano, who gave me both freedom and support to pursue my project. I am equally indebted to him for having adapted this thesis project in order to combine both of my passions: autonomous robotics and aviation. Siegwart for participating in my thesis committee. They all three were at the origin(More)
Fully autonomous control of ultra-light indoor airplanes has not yet been achieved because of the strong limitations on the kind of sensors that can be embedded making it difficult to obtain good estimations of altitude. We propose to revisit altitude control by considering it as an obstacle avoidance problem and introduce a novel control scheme where the(More)
Because of their ability to naturally float in the air, indoor airships (often called blimps) constitute an appealing platform for research in aerial robotics. However, when confronted to long lasting experiments such as those involving learning or evolutionary techniques, blimps present the disadvantage that they cannot be linked to external power sources(More)
The ability to fly at low altitude while actively avoiding collisions with the terrain and other objects is a great challenge for small unmanned aircraft. This paper builds on top of a control strategy called optiPilot whereby a series of optic-flow detectors pointed at divergent viewing directions around the aircraft main axis are linearly combined into(More)