Antje Pokorny

Learn More
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer(More)
The kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC(More)
Delta-lysin is a 26 amino acid, hemolytic peptide toxin secreted by Staphylococcus aureus. It has been reported to form an amphipathic helix upon binding to lipid bilayers and is often cited as a typical example of the barrel-stave model for pore formation in lipid bilayer membranes. However, the exact mechanism by which it lyses cells and the physical(More)
Delta-lysin is a linear, 26-residue peptide that adopts an alpha-helical, amphipathic structure upon binding to membranes. Delta-lysin preferentially binds to mammalian cell membranes, the outer leaflets of which are enriched in sphingomyelin, cholesterol, and unsaturated phosphatidylcholine. Mixtures including these lipids have been shown to exhibit(More)
The mechanisms of six different antimicrobial, cytolytic, and cell-penetrating peptides, including some of their variants, are discussed and compared. The specificity of these polypeptides varies; however, they all form amphipathic alpha-helices when bound to membranes, and there are no striking differences in their sequences. We have examined the(More)
Delta-lysin is a 26-residue, amphipathic, alpha-helical peptide of bacterial origin. Its specificity is to some extent complementary to that of antimicrobial peptides. Therefore, understanding its mechanism is important for the more general goal of understanding the interaction of amphipathic peptides with membranes. In this article, we show that(More)
We performed a series of molecular dynamics simu lations to study the nature of interactions between transportan 10 (tp10) and a zwitterionic POPC bilayer. Tp10 is an amphipathic cell-penetrating peptide with a net positive charge of +5 and is known to adopt an α-helical secondary structure on the surface of POPC membranes. The study showed that tp10(More)
The all-or-none kinetic model that we recently proposed for the antimicrobial peptide cecropin A is tested here for magainin 2. In mixtures of phosphatidylcholine (PC)/phosphatidylglycerol (PG) 50:50 and 70:30, release of contents from lipid vesicles occurs in an all-or-none fashion and the differences between PC/PG 50:50 and 70:30 can be ascribed mainly to(More)
The mechanism of the all-or-none release of the contents of phospholipid vesicles induced by the antimicrobial peptide cecropin A was investigated. A detailed experimental study of the kinetics of dye release showed that the rate of release increases with the ratio of peptide bound per vesicle and, at constant concentration, with the fraction of the anionic(More)
The concept of lipid rafts and the intense work toward their characterization in biological membranes has spurred a renewed interest in the understanding of domain formation, particularly in the case of cholesterol-containing membranes. The thermodynamic principles underlying formation of domains, rafts, or cholesterol/phospholipid complexes are reviewed(More)