Learn More
Delta-lysin is a 26-residue, amphipathic, alpha-helical peptide of bacterial origin. Its specificity is to some extent complementary to that of antimicrobial peptides. Therefore, understanding its mechanism is important for the more general goal of understanding the interaction of amphipathic peptides with membranes. In this article, we show that(More)
The mechanisms of six different antimicrobial, cytolytic, and cell-penetrating peptides, including some of their variants, are discussed and compared. The specificity of these polypeptides varies; however, they all form amphipathic alpha-helices when bound to membranes, and there are no striking differences in their sequences. We have examined the(More)
The kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC(More)
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer(More)
Delta-lysin is a 26 amino acid, hemolytic peptide toxin secreted by Staphylococcus aureus. It has been reported to form an amphipathic helix upon binding to lipid bilayers and is often cited as a typical example of the barrel-stave model for pore formation in lipid bilayer membranes. However, the exact mechanism by which it lyses cells and the physical(More)
The mechanism of the all-or-none release of the contents of phospholipid vesicles induced by the antimicrobial peptide cecropin A was investigated. A detailed experimental study of the kinetics of dye release showed that the rate of release increases with the ratio of peptide bound per vesicle and, at constant concentration, with the fraction of the anionic(More)
The all-or-none kinetic model that we recently proposed for the antimicrobial peptide cecropin A is tested here for magainin 2. In mixtures of phosphatidylcholine (PC)/phosphatidylglycerol (PG) 50:50 and 70:30, release of contents from lipid vesicles occurs in an all-or-none fashion and the differences between PC/PG 50:50 and 70:30 can be ascribed mainly to(More)
The concept of lipid rafts and the intense work toward their characterization in biological membranes has spurred a renewed interest in the understanding of domain formation, particularly in the case of cholesterol-containing membranes. The thermodynamic principles underlying formation of domains, rafts, or cholesterol/phospholipid complexes are reviewed(More)
The presence of the cationic phospholipid lysyl-phosphatidylglycerol (lysyl-PG) in staphylococcal cytoplasmic membranes has been linked to increased resistance to cationic compounds, including antibiotics such as daptomycin as well as host defense antimicrobial peptides. We investigated the effects of lysyl-PG on binding of 6W-RP-1, a synthetic(More)
We performed a series of molecular dynamics simu lations to study the nature of interactions between transportan 10 (tp10) and a zwitterionic POPC bilayer. Tp10 is an amphipathic cell-penetrating peptide with a net positive charge of +5 and is known to adopt an α-helical secondary structure on the surface of POPC membranes. The study showed that tp10(More)