Learn More
Hippocampal plasticity and mnemonic processing exhibit a striking time-of-day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time-related information are coded in dynamics of so-called clock genes and their protein products, first discovered and(More)
In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse(More)
Circadian rhythms in physiology and behavior are driven by a central clock residing within the hypothalamic suprachiasmatic nucleus (SCN). Molecularly, the biological clock is based on the transcriptional/translational feedback loop of clock genes (mPer, mCry, Clock, and Bmal1). Circadian expression of clock genes is not limited to the SCN, but is found in(More)
Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h)(More)
The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body.(More)
Melatonin provides a rhythmic neuroendocrine output, driven by a central circadian clock that encodes information about phase and length of the night. In the hypophyseal pars tuberalis (PT), melatonin is crucial for rhythmic expression of the clock genes mPer1 and mCry1, and melatonin acting in the PT influences prolactin secretion from the pars distalis.(More)
Circadian rhythms, generated in the mouse suprachiasmatic nucleus (SCN), are synchronized to the environmental day–night changes by photic input. The activation of the extracellular signal-regulated kinases 1 and 2 (ERK1,2) and cAMP response element-binding protein (CREB)-mediated transcription play a critical role in this photoentrainment. The small GTPase(More)
Pituitary function relies on strictly timed, yet plastic mechanisms, particularly with respect to the daytime-dependent coordination of hormone synthesis and release. In other systems, clock genes and their protein products are well-described candidates to anticipate the daily demands in neuroendocrine coupling and to manage cellular adaptation on changing(More)
Light is the main phase-adjusting stimulus of the circadian clock located in the suprachiasmatic nucleus (SCN). A candidate pathway transmitting photic information at the postsynaptic site in the SCN is the extracellular signalregulated kinase (ERK 1/2) which has been previously shown to be an essential element in the photoentrainment of the circadian(More)
  • 1