Anthony W. Czarnik

Learn More
Neomycin inhibits the binding of Tat-derived peptides to the trans-activating region (TAR) of HIV-1 RNA. Kinetic studies reveal that neomycin acts as a noncompetitive inhibitor that can bind to the Tat-TAR complex and increase the rate constant (koff) for dissociation of the peptide from the RNA. Neomycin effects a conformational change in the structure of(More)
TAR RNA represents an attractive target for the intervention of human immunodeficiency virus type 1 (HIV-1) replication by small molecules. We now describe three small molecule inhibitors of the HIV-1 Tat-TAR interaction that target the RNA, not the protein. The chemical structures and RNA binding characteristics of these inhibitors are unique for each(More)
We have developed a therapeutic program focusing on the inhibition of a human immunodeficiency virus-1 specific protein-RNA interaction. This program begins with a search for small organic molecules that would interfere with the binding of Tat protein to TAR RNA. The methodologies chosen to study the HIV-1 Tat-TAR interaction and inhibition include gel(More)
High-throughput screening assays have been developed to rapidly identify small molecule inhibitors targeting catalytic group I introns. Biochemical reactions catalyzed by a self-splicing group I intron derived from Pneumocystis carinii or from bacteriophage T4 have been investigated. In vitro biochemical assays amenable to high-throughput screening have(More)
Assuming that the chemical reactions used to synthesize a combinatorial library member are successful, then knowledge of the specific reaction sequence is equivalent to knowing the member's chemical identity. Because the determination of chemical identity is typically not automatable and requires a substantial amount of material, schemes that encode a(More)
The list of biologically active small molecules for which fluorescent sensors would be desirable is enormous. The list of sensors actually available is surprisingly small. The reason derives in part from a lack of communication between chemistry inventors and biology end-users. A new World Wide Web board has been created to address this need.
Self-splicing group I intron RNA was chosen as a potential therapeutic target for small-molecule intervention. High-throughput screening methodologies have been developed to identify small organic molecules that regulate the activities of these catalytic introns. Group introns derived from pathogenic Pneumocystis carinii and phage T4 were used as model(More)
Alkyl aryl ether formation is a frequently employed reaction in organic synthesis. Ullmann condensation is an alternative method to the widely used Mitsunobu reaction and is very useful in situations where application of the Mitsunobu reaction is limited. By application of this reaction to solid-phase synthesis of a series of alkyl aryl ethers, reaction(More)
We have synthesizedN-methyl-9-anthrylhydroxamic acid, which is a fluorescent analogue ofN-methylbenzohydroxamic acid. Complexation with various di- and trivalent metal ions occurs (logK from 4 to 5) in water with resulting fluorescence quenching. Because the Fe(III) and Al(III) complexes substituted rather slowly, the addition of EDTA provides a temporal(More)