Anthony Richardella

Learn More
We present an application of kernel methods to extracting relations from unstructured natural language sources. We introduce kernels defined over shallow parse representations of text, and design efficient algorithms for computing the kernels. We use the devised kernels in conjunction with Support Vector Machine and Voted Perceptron learning algorithms for(More)
Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using(More)
Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin-orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with(More)
The discovery of ferromagnetism in Mn-doped GaAs has ignited interest in the development of semiconductor technologies based on electron spin and has led to several proof-of-concept spintronic devices. A major hurdle for realistic applications of Ga(1-x)Mn(x)As, or other dilute magnetic semiconductors, remains that their ferromagnetic transition temperature(More)
When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new(More)
Superconductivity involving topological Dirac electrons has recently been proposed as a platform between concepts in high-energy and condensed-matter physics. It has been predicted that supersymmetry and Majorana fermions, both of which remain elusive in particle physics, may be realized through emergent particles in these particular superconducting(More)
We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion(More)
Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin(More)
Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external(More)
Periodic Aharonov–Bohm and Altshuler–Aronov–Spivak oscillations have traditionally been observed in lateral transport through patterned mesoscopic loops of diffusive conductors. However, our studies of perpendicular-to-plane magnetotransport in straight-channel, diffusive devices of epitaxial Bi2Se3 surprisingly reveal signatures of Aharonov–Bohm orbits,(More)