Anthony L Shrout

Learn More
Transmembrane receptors in the signaling pathways of bacterial chemotaxis systems influence cell motility by forming noncovalent complexes with the cytoplasmic signaling proteins to regulate their activity. The requirements for receptor-mediated activation of CheA, the principal kinase of the Escherichia coli chemotaxis signaling pathway, were investigated(More)
The structural domains of the Escherichia coli CheA protein resemble 'beads on a string', since the N-terminal phosphate-accepting (P) domain is joined to the CheY/CheB-binding (B) domain through a flexible linker, and the B domain is in turn joined to the C-terminal dimerization/catalytic/regulatory domains by a second intervening linker. Dimerization(More)
All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation--a slower process that restores kinase(More)
In addition to its role as a barrier between the cytoplasm and the extracellular milieu, the cell membrane is a scaffold for a diverse collection of receptors and enzymes. The organization afforded by this scaffold serves to ensure an efficient interaction between the components of the membrane. The desire to maintain this organization in solution is a(More)
Problems in membrane biology require methods to recreate the interactions between receptors and cytoplasmic signaling proteins at the membrane surface. Here, unilamellar vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and a nickel-chelating lipid were used as templates to direct the assembly of proteins from the Escherichia coli chemotaxis(More)
Receptor tyrosine kinases have become important therapeutic targets because of their involvement in diseases, including cancer. Kinase domains, which are soluble and easily purified, have found widespread use in enzyme inhibitor assays, but these domains do not exhibit full function because they are isolated from the membrane. To address this shortcoming,(More)
A multitude of proteins reside at or near the cell membrane, which provides a unique environment for organizing and promoting assemblies of proteins that are involved in a variety of cellular signaling functions. Many of these proteins and pathways are implicated in disease. For example, strong links have been established between receptor tyrosine kinases(More)
The inositol monophosphatase (IMPase) enzyme from the hyperthermophilic archaeon Methanocaldococcus jannaschii requires Mg(2+) for activity and binds three to four ions tightly in the absence of ligands: K(D) = 0.8 muM for one ion with a K(D) of 38 muM for the other Mg(2+) ions. However, the enzyme requires 5-10 mM Mg(2+) for optimum catalysis, suggesting(More)
The influence of resonance on the acidities of dimethyl sulfide (DMS), dimethyl sulfoxide (DMSO), and dimethyl sulfone (DMSO2) and their group 16 congeners (DMXO(n) for X = Se, Te, Po and n = 0-2) is examined using ab initio methods and the natural bond orbital (NBO) and natural resonance theory (NRT) analyses. Gas-phase acidities are evaluated using(More)
  • 1