Learn More
Xenopus laevis tadpoles are capable of limb regeneration after amputation, in a process that initially involves the formation of a blastema. However, Xenopus has full regenerative capacity only through premetamorphic stages. We have used the Affymetrix Xenopus laevis Genome Genechip microarray to perform a large-scale screen of gene expression in the(More)
The influence of the wound epithelium on the cellular events preceding blastema formation was examined by comparing dedifferentiation, DNA labeling indices, and mitotic indices of the distal mesodermal tissues in control regenerating newt forelimbs and in amputated forelimbs covered with a flap of full thickness skin. Three kinds of results were seen(More)
Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in Xenopus laevis hindlimb regeneration, which declines during larval development. During(More)
Complete regeneration of complex tissues and organs is usually precluded by fibrotic reactions that lead to scarring. Fish, salamanders, and larval anurans are among the few vertebrates capable of regenerating lost appendages, and this process seems to recapitulate ontogenic development of the structure in most respects. Recent work has revealed a capacity(More)
Many components of the vertebrate immune system have evolved with dual, interrelated functions of both protecting injured tissues from infection and providing for tissue maintenance and repair of injuries. The capacity for organ regeneration, prominent among invertebrates and certain phylogenically primitive vertebrates, is poorly developed in mammals. We(More)
  • A L Mescher
  • 1996
Formation of a regeneration blastema on the amputated urodele limb involves changes in the gene activity of differentiated cells resulting in their histological dedifferentiation and their return to a proliferative state. This review summarizes studies in limb regeneration and in the related fields of tissue repair and limb development that provide new(More)
During amphibian epimorphic limb regeneration, local injury produces metabolic changes that lead to cellular dedifferentiation and formation of a blastema, but few details of these changes have been elucidated. Here we report the first global proteomic analysis of epimorphic regeneration comparing the profiles of abundant proteins in larval limbs of the(More)
Protein synthesis has been studied by two-dimensional PAGE during the early limb regeneration in the adult newt. Quantitative and statistical analyses have provided unique information on overall patterns of protein synthesis as well as on specific protein synthesis during formation of the blastema. Furthermore, from the patterns in the two-dimensional gels(More)
The myogenic regulatory factors (MRFs) MyoD and Myf5 are the earliest described muscle-specific genes to be expressed in Xenopus development. To study the in vivo effects of overexpressing Xenopus MyoD and Myf5, synthetic RNAs were microinjected into single blastomeres of 2- to 32-cell stage Xenopus embryos. In vivo overexpression of these MRFs initiates(More)