Anthony J Tesoriero

Learn More
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and(More)
Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds(More)
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen(More)
Four local-scale sites in areas with similar corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] agriculture were studied to determine the effects of different hydrogeologic settings of the Northern Atlantic Coastal Plain (NACP) on the transport of nutrients and pesticides in groundwater. Settings ranged from predominantly well-drained soils overlying(More)
A shallow aquifer with different redox zones overlain by intensive agricultural activity was monitored for the occurrence of 1,2-dichloropropane (DCP) to assess the fate and origin of this pollutant. DCP was detected more frequently in groundwater samples collected in aerobic and nitrate-reducing zones than those collected from iron-reducing zones.(More)
Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of(More)
Historic Perspective Since the end of the Second World War (WWII), there have been increased releases of nitrogen (N) into the environment as a result of increased fertilizer usage, fixation by crops, mineralization of animal manure, and atmospheric deposition, along with miscellaneous other sources (1, 2). N contamination is of interest because of(More)
The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen(More)
Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved(More)
We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one(More)
  • 1