Learn More
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging method that can be used to measure local information about the structure of white matter within the human brain. Combining DTI data with the computational methods of MR tractography, neuroscientists can estimate the locations and sizes of nerve bundles (white matter pathways) that course through(More)
For more than a century, neurologists have hypothesized that the arcuate fasciculus carries signals that are essential for language function; however, the relevance of the pathway for particular behaviors is highly controversial. The primary objective of this study was to use diffusion tensor imaging to examine the relationship between individual variation(More)
Measuring the properties of the white matter pathways from retina to cortex in the living human brain will have many uses for understanding visual performance and guiding clinical treatment. For example, identifying the Meyer's loop portion of the optic radiation (OR) has clinical significance because of the large number of temporal lobe resections. We use(More)
Magnetic resonance diffusion-weighted imaging coupled with fiber tractography (DFT) is the only non-invasive method for measuring white matter pathways in the living human brain. DFT is often used to discover new pathways. But there are also many applications, particularly in visual neuroscience, in which we are confident that two brain regions are(More)
This paper presents MicroTrack, an algorithm that combines global tractography and direct microstructure estimation using diffusion-weighted imaging data. Previous work recovers connectivity via tractography independently from estimating microstructure features, such as axon diameter distribution and density. However, the two estimates have great potential(More)
(a) (b) (c) (d) Figure 1: These four volume renderings utilize a fully opaque transfer function, but are segmented using the method discussed in this paper. The segmented volumes show: (a) abdominal aortic branch vessels, (b) an aortic aneurysm, (c) an aorta, and (d) peripheral blood vessels in the lung. The yellow arrows indicate the location of the user's(More)
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging method that can be used to measure local information about the structure of white matter within the human brain. Combining DTI data with the computational methods of MR tractography, neuroscientists can estimate the locations and sizes of nerve bundles (white matter pathways) that course through(More)
The standard procedure for diagnosing lung cancer involves two stages: three-dimensional (3D) computed-tomography (CT) image assessment, followed by interventional bronchoscopy. In general, the physician has no link between the 3D CT image assessment results and the follow-on bronchoscopy. Thus, the physician essentially performs bronchoscopic biopsy of(More)
Estimating the complete set of white matter fascicles (the projectome) from diffusion data requires evaluating an enormous number of potential pathways; consequently, most algorithms use computationally efficient greedy methods to search for pathways. The limitation of this approach is that critical global parameters--such as data prediction error and white(More)