Anthony J. Romano

Learn More
OBJECTIVE Liver stiffness is associated with portal hypertension in patients with chronic liver disease. However, the relation between spleen stiffness and clinically significant portal hypertension remains unknown. The purposes of this study were to determine the feasibility of measuring spleen stiffness with MR elastography and to prospectively test the(More)
In this paper, we present a formulation and numerical simulation for the noninvasive determination of the material parameter ratios (i.e., the Lame parameters divided by density) of an isotropic, inhomogenous elastic medium subject to time harmonic vibration. Given a knowledge of the displacements throughout the medium, a novel implementation of a(More)
We present a novel extension of standard magnetic resonance elastography (MRE) measurement and analysis methods, which is applicable in cases where the medium is characterized by waveguides or fiber bundles (i.e., muscle) leading to constrained propagation of elastic waves. As a demonstration of this new method, MRI is utilized to identify the pathways of(More)
The performance of an inversion algorithm is investigated when applied to measured displacement data for a determination of the material parameters /sup /spl lambda/+2/spl mu////sub /spl rho// (longitudinal wave velocity squared) and /sup /spl mu////sub /spl rho// (shear wave velocity squared) throughout an inhomogeneous test phantom. The vector(More)
PURPOSE To investigate the influence of portal pressure on the shear stiffness of the liver and spleen in a well-controlled in vivo porcine model with magnetic resonance elastography (MRE). A significant correlation between portal pressure and tissue stiffness could be used to noninvasively assess increased portal venous pressure (portal hypertension),(More)
Magnetic resonance elastography (MRE) measurements of shear stiffness (mu) in a spherical phantom experiencing both static and cyclic pressure variations were compared to those derived from an established pressure-volume (P-V)-based model. A spherical phantom was constructed using a silicone rubber composite of 10 cm inner diameter and 1.3 cm thickness. A(More)
The goal of this current study was to determine whether an MRI-based elastography (MRE) method can visualize and assess propagating mechanical waves within fluid-filled vessels and to investigate the feasibility of measuring the elastic properties of vessel walls and quantitatively assessing stenotic lesions by using MRE. The ability to measure the Young's(More)
The study purpose was to examine dose-response relationships between behavior on a computer-delivered treatment program and outcome in obsessive-compulsive disorder (OCD), and to report the use of human-computer interactions (HCIs) as a process measure in psychotherapy research. Thirteen OCD patients completed three 45-minute sessions at weekly intervals on(More)
PURPOSE To measure the elastic properties of ex vivo porcine aortas in control and hypertensive groups using a phase contrast magnetic resonance imaging (MRI)-based elastography technique. MATERIALS AND METHODS Female domestic pigs were randomized to a normal control group (N; n=5) or a renovascular hypertension group (HT; n=5) for the duration of 3(More)
Magnetic resonance elastography is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, magnetic resonance elastography inversions generally assume that the measured tissue motion consists primarily of shear waves(More)