Anthony J Hudson

Learn More
Escherichia coli contains at least two iron storage proteins, a ferritin (FtnA) and a bacterioferritin (Bfr). To investigate their specific functions, the corresponding genes (ftnA and bfr) were inactivated by replacing the chromosomal ftnA and bfr genes with disrupted derivatives containing antibiotic resistance cassettes in place of internal segments of(More)
Recent studies have indicated that Escherichia coli possesses at least two iron-storage proteins, the haem-containing bacterioferritin and ferritin. The ferritin protein has been amplified 600-fold to 11-14% of total cell protein in a bfr mutant and purified to homogeneity with an overall yield of 13%. The cellular ferritin content remained relatively(More)
The high-resolution structure of the non-haem ferritin from Escherichia coli (EcFtnA) is presented together with those of its Fe(3+) and Zn(2+) derivatives, this being the first high-resolution X-ray analysis of the iron centres in any ferritin. The binding of both metals is accompanied by small changes in the amino acid ligand positions. Mean(More)
X-Ray analysis of the ferritin of Escherichia coli (Ec-FTN) and of Ec-FTN crystals soaked in (NH4)2Fe(SO4)2 has revealed the presence of three iron-binding sites per subunit. Two of these form a di-iron site in the centre of the subunit as has been proposed for the 'ferroxidase centres' of human ferritin H chains. This di-iron site, lying within the(More)
Iron that has been oxidized by H-chain ferritin can be transferred into other ferritin molecules before it is incorporated into mature ferrihydrite iron cores. Iron(III) dimers are formed at the ferroxidase centres of ferritin H chains at an early stage of Fe(II) oxidation. Mössbauer spectroscopic data now show that the iron is transferred as monomeric(More)
  • 1