Anthony J. H. M. Meijer

Learn More
Electron transfer (ET) from donor to acceptor is often mediated by nuclear-electronic (vibronic) interactions in molecular bridges. Using an ultrafast electronic-vibrational-vibrational pulse-sequence, we demonstrate how the outcome of light-induced ET can be radically altered by mode-specific infrared (IR) excitation of vibrations that are coupled to the(More)
We report upon an analysis of the vibrational modes that couple and drive the state-to-state electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm(More)
Structural, spectroscopic and theoretical studies of a diruthenium(II,II) tetraformamidinate that reversibly binds dioxygen Original Citation (2016) Structural, spectroscopic and theoretical studies of a diruthenium(II,II) tetraformamidinate that reversibly binds dioxygen. Users may access full items free of charge; copies of full text items generally can(More)
Stabilisation of the mixed-valence state in [Mo2(TiPB)3(HDOP)]2(+) (HTiPB = 2,4,6-triisopropylbenzoic acid, H2DOP = 3,6-dihydroxypyridazine) by electron transfer (ET) is related to the proton coordinate of the bridging ligands. Spectroelectrochemical studies suggest that ET is slower than 10(9) s(-1). The mechanism has been probed using DFT calculations,(More)
We present quantum dynamical calculations on the conformational changes of glycine in collisions with the He, Ne, and Ar rare-gas atoms. For two conformer interconversion processes (III-->I and IV-->I), we find that the probability of interconversion is dependent on several factors, including the energy of the collision, the angle at which the colliding(More)
  • 1