Anthony J. Clark

Learn More
Fusarium head blight (FHB), or head scab, is an economically important disease of wheat (Triticum aestivum L.). In developing FHB-resistant soft winter wheat cultivars, breeders have relied on phenotypic selection, marker assisted selection (MAS), or a combination of the two. The objectives of this study were to estimate heritability of resistance in a(More)
Introduction. Web-based applications are highly accessible to users, providing rich, interactive content while eliminating the need to install software locally. Previous online evolutionary demonstrations (PicBreeder [Secretan et al., 2008], Endless Forms [Clune and Lipson, 2011], Ludobots [Bongard et al., 2012], and BoxCar2D) have successfully demonstrated(More)
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While(More)
Designing a robotic fish is a challenging endeavor due to the non-linear dynamics of underwater environments. In this paper, we present an evolutionary computation approach for designing the caudal fin of a carangiform robotic fish. Evolutionary experiments are performed in a simulated environment utilizing a mathematical model to approximate the(More)
The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of(More)
Developing complex behaviors for aquatic robots is a difficult en- gineering challenge due to the uncertainty of an underwater environment. Neuroevolution provides one method of dealing with this type of problem. Artificial neural networks discern different conditions by mapping sensory input to responses, and evolutionary computation provides a training(More)
In this paper, we apply evolutionary multiobjective optimization to the design of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to discover solutions (physical dimensions, flexibility, and control parameters) that optimize both swimming performance and power efficiency. The optimization is conducted in a custom(More)
Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of(More)
The nonlinear dynamics of an aquatic environment make robotic fish behavior difficult to predict and subsequently difficult to optimize. In this paper, we present a method for optimizing robotic fish propulsion through the evolution of control patterns and caudal fin flexibility. Evolved solutions are evaluated in a physics-based simulation environment.(More)
Many robotic systems experience fluctuating dynamics during their lifetime. Variations can be attributed in part to material degradation and decay of mechanical hardware. One approach to mitigating these problems is to utilize an adaptive controller. For example, in model-free adaptive control (MFAC) a controller learns how to drive a system by continually(More)